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1 Introduction

Warehouses are used for an intermediate storage of commodities and are indispensable in a number of industries,
including logistics, manufacturing, and retail. With digitization, spreading express-deliveries in e-commerce, and
(mass-)customization in manufacturing, many companies have to reconsider their warehousing operations as online,
with dynamically arriving orders to retrieve commodities from the one hand, and a pressure for a fast, but cost-efficient
processing of these orders, on the other hand. Therefore, the interest in online policies for warehousing operations is
high in the optimization literature Pardo et al. (cf. 2023).

A central instrument in understanding and improving the performance of online policies is the gap to optimality.
However, the concept of optimality is not so obvious in an online, dynamic setting, as it is in case of deterministic
optimization problems. Indeed, the sequentially incoming information – orders with specific characteristics arriving
at certain times – may take a wide range of values, whose ‘true’ distribution is essentially unknown in practice. A
concept of complete-information optimum (CIOPT) evolved as a state-of-the-art instrument to estimate optimality gaps
of online policies (see Fiat and Woeginger, 1998). CIOPT (I) for instance I refers to the best possible objective value
computed by an omniscient oracle, who has the complete information on the future – i.e., on the incoming orders in the
context of the warehousing operations.

The concept of CIOPT is useful for two main reasons. First of all, it can be interpreted as the best possible feasible
online policy, including any anticipatory policies (cf. Fiat and Woeginger, 1998). Secondly, finding CIOPT amounts to
solving a deterministic optimization problem, since all the future information is immediately available ’with certainty’.
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Even if we would know the true distribution of the future information, it is usually computationally easier to find CIOPT
than to solve the resulting stochastic multistage optimization problem.

In this paper, we develop algorithms to compute CIOPT in the context of warehousing operations. We focus on picking
activities, since they consume more than the half of operating costs (Chen et al., 2015; Marchet et al., 2015), and
investigate a widespread pick-while-sort setup in picker-to-parts warehouses. Picker-to-parts warehouses, in which the
picker travels around the warehouse to collect ordered items, constitute the majority of the warehouses (Napolitano,
2012; Vanheusden et al., 2023). In the pick-while-sort setup, the picker is equipped with a cart and can process several
orders at a time to save on costs. The cart consists of bins, each bin can accommodate the items of one order. Figure 1
illustrates two alternative cart technologies: a manual pushcart and a robotic cart. The order picking operations in the
described setting refer to the online order batching, sequencing, and routing problem (OOBSRP) in the classification of
Pardo et al. (2023), which is one of the most studied problems in the warehousing literature. To compute CIOPT, we
have to solve exactly the complete-information counterpart of OOBSRP, which is the order batching, sequencing, and
routing problem with release times (OBSRP-R). Observe that since the arrival times of dynamically arriving orders are
perfectly known to the omniscient oracle, they can be interpreted as release times.

To the best of our knowledge, no exact or heuristic methods have been proposed for OBSRP-R. Not surprisingly, there
is very little understanding of the optimality gaps of the developed online policies for the online problem – OOBSRP.
The contribution of this paper is the following:

• We design a dynamic program (DP) for OOBSRP-R, which can flexibly accommodate different cart technolo-
gies (a manual pushcart and a robotic cart) as well as different objective functions, including the cost-oriented
minimization of the total completion time of the order picking operations.

• The proposed DP utilizes tailored dominance rules that reduce computational times significantly.

In the following, Section 2 states OBSRP-R formally and Section 3 presents our exact solution approach.

2 Problem statement

We define OBSRP-R with a pushcart and with a robotic cart, and discuss the underlying assumptions in Section 2.1.
Afterward, Section 2.2 introduces some of the problem’s properties.

Throughout the rest of the paper, we abbreviate {1, . . . , n},∀n ∈ N simply as [n].

2.1 The order batching, sequencing and routing problem with release times (OBSRP-R)

OBSRP-R describes picking operations of a single picker equipped with a cart (cf. Pardo et al., 2023). For simplicity,
we call the working zone of this picker a warehouse. The warehouse is rectangular and of length L and width W . It
consists of a ≥ 1 vertical aisles, b ≥ 2 horizontal cross-aisles, and a depot ld which is positioned at some arbitrary
location in the warehouse (see Figure 2). We dub the access point to the storage location, where the ordered item can be

Source: Governo do Estado de São Paulo. License.: CC BY 2.0

(a) Pushcart
Source: SSI Schäfer

(b) Robotic cart

Figure 1: Different types of picking carts in a picker-to-parts warehouse
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Figure 2: Illustration of a warehouse
Note. A warehouse of length L and width W in a rectilinear with three cross-aisles and seven aisles. The colored squares mark
storage locations of the ordered items. The grey circles in the adjacent aisles mark the respective picking locations of these items.

retrieved, as the picking location of this item (see circles in Figure 2). Note that the picker can access the product items
only from the aisles. Specifically, no items can be picked from the cross-aisles. The picker moves along aisles and
cross-aisles, which results in a particular rectilinear distance metric d().

The picker begins her operation at the depot and navigates through the warehouse at a constant speed, v. She has a cart
with c bins, as depicted in Figure 1, where each bin is dedicated to a different order, so that items from the same order
are grouped together in one bin. Consequently, up to c orders can be collected simultaneously (in one batch) to speed
up the process. And we call c as the batching capacity in the following. Note that items from the same order cannot be
split across different batches.

We examine two variants of OBSRP-R, each featuring a different cart technology: OBSRP-R with a pushcart and
OBSRP-R with a robotic cart. The main difference between the carts is that the pushcart is moved by the picker,
whereas the robotic cart can drive autonomously. Therefore, in case of a pushcart, the picker must return the cart with
a completed batch to the depot for unloading; from there, she can pick an empty cart and start the next batch. Like
this, a batch is completed at the return to the depot. In contrast, a robotic cart drives autonomously to the depot for
unloading each time a batch is completed. Therefore, the picker can stay in the ’field’ and move directly to the first
picking location of the next batch, where a new, empty robotic cart is already waiting. Thus, in case of a robotic cart,
the completion time of a batch corresponds to the time when the last item of this batch is picked.

Following the definition of OBSRP(-R) (cf. Pardo et al., 2023), we assume that each ordered item is associated with a
unique picking location. This corresponds, for instance, to a hierarchical planning process, when the picking locations
of the ordered items are determined first. Therefore, we use the terms item and a picking location interchangeably in the
following.

An instance I of the OBSRP-R with a a specific cart has the following input (see Table 1):

• warehouse parameters, such as the number of aisles a, the number of cross-aisles b, length L, width W ,
distance metric d();

• parameters of the picker and the cart, such as the picker’s speed v, the batching capacity c, and constant pick
time tp to retrieve an item from its picking location;

• set of no orders. Each order oj , j ∈ [no]:

– represents a set of picking locations of the ordered items oj := {s1j , ..., slj}, l ∈ N;

– is associated with a release time rj ∈ R+.

W.l.o.g., we assume r1 ≤ r2 ≤ ... ≤ rno . We also abuse the notation and denote the release time of item s
in order oj simply as r(s) := rj . Each order can have a different number of picking locations. We denote the
distance between some picking locations sij , s

i′

j′ , as d(sij , s
i′

j′). Similarly, d(ld, sij) refers to the distance between
location sij and the depot. We assume that the distances are metric, for instance, that the triangular inequalities hold:
∀i, l, k ∈ S∪{ld} : d(i, k) ≤ d(i, l)+d(l, k). The latter is true, for instance, if the distance is measured along a shortest

path between the corresponding locations. For convenience, we denote the total number of items as ni :=
no∑
j=1

|oj | and

the set of items as S :=
⋃

j∈[no]{oj}. The retrieval of each item requires fixed pick time tp.

Let denote the completion time of an ordered item s ∈ S in some solution σ as C(s, σ), which is the time when the item
is placed in the cart. In the following, we abuse the notation and drop the reference to σ, if it is clear from the context.
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A feasible solution σ of OBSRP-R for a given instance I consists of:

• the visiting sequence of picking locations π, which is constructed as π := (πB1 , πB2 , . . . , πBf ), |π| = ni,
based on the following components:

– an ordered sequence of batches πbatches = (B1, B2, . . . , Bf ), such that the batches form a mutually
disjoint partition of the orders: {o1, ..., ono} = B1 ∪ B2 ∪ . . . ∪ Bf , Bl ∩ Bk = ∅ ∀k, l ∈ {1, ..., f};
each batch contains at most c orders. The number of batches f ∈ N is a decision variable.

– for each batch Bl, a permutation of the picking locations of all the included orders πBl .
• the picking schedule consisting of a completion time C(s) for each item s ∈ S, such that the routing

requirements for the specific type of cart are respected, and no item s is picked before its release time r(s).
Specifically, the values C(s), s ∈ S obey equations (5)-(6) in case of a pushcart and (3)-(4) in case of a robotic
cart, respectively, as stated below.

The objective function is to minimize the total completion time of picking. This cost-centered objective revolves around
the working time of the picker and is defined as follows:

Minimizeσ z(σ) = max
s∈S

C(s) in the case of a robotic cart (1)

Minimizeσ z(σ) = max
s∈S

(C(s) +
1

v
· d(s, ld)) in the case of a pushcart (2)

In Objective (2), the picker has to return the cart to the depot for unloading at the end of picking operations.

Without losing optimality, we assume that the picker collects each item at the earliest possible time (which accounts for
the release times of the orders). Therefore, given the sequence of picking locations π and the respective sequence of
batches πbatches, we can compute the schedule in the unique way. For convenience, let denote the ith item in π as π[i].
In case of a robotic cart:

C(π[1]) = max{1
v
· d(ld, π[1]), r(π[1])}+ tp (3)

C(π[i+ 1]) = max{C(π[i]) +
1

v
· d(π[i], π[i+ 1]), r(π[i+ 1])}+ tp ∀i ∈ [ni − 1] (4)

In case of a pushcart, we have to return the cart to the depot between two subsequent batches, therefore:

C(π[1]) =max{1
v
· d(ld, π[1]), r(π[1])}+ tp (5)

C(π[i+ 1]) =

{
max{C(π[i]) + 1

v · d(π[i], π[i+ 1]), r(π[i+ 1])}+ tp if π[i], π[i+ 1] belong to the same batch
max{C(π[i]) + 1

v · d(π[i], ld) + 1
v · d(ld, π[i+ 1]), r(π[i+ 1])}+ tp if π[i], π[i+ 1] belong to distinct batches

∀i ∈ [ni − 1] (6)

2.2 Selected dominance relations in OBSRP-R with a robotic cart

In the designed exact solution algorithm, we reduce the solution space for an OBSRP-R instance I with by excluding
weakly dominated solutions. A feasible solution σ̂ is weakly dominated by some other feasible solution σ̃ if z(σ̃) ≤ z(σ̂).

Proposition 1 of this section formulates some dominance relations for OBSRP-R with a robotic cart. We state several
further dominance relations for OBSRP-R with both alternative cart technologies in Section 3.3, after the description of
the dynamic program (Sections 3.1-3.2), because we will rely on the notation of Section 3.1to explain, how these rules
are integrated into the solution procedure.

The message of Proposition 1 is very simple: If possible, it is always worth closing a batch and getting an empty robotic
cart. In other words, as soon as all items of the already commenced orders of the current batch have been picked, the
picker should close the batch and start a new one with a timely arrived empty robotic cart, since the resulting total
completion time will ceteris paribus not increase.
Proposition 1. Consider any feasible solution σ̃ with a visiting sequence of picking locations π̃ and the respective
sequence of batches π̃batches, |π̃batches| = f̃ ∈ N that schedules two batches B̃l, B̃l+1, l ∈ [f̃ − 1], with the following
property subsequently:

|B̃l|+ |B̃l+1| ≤ c (7)

Then, σ̃ weakly dominates the following feasible solution σ̂:
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Table 1: Notation
Parameters of an OBSRP-R instance I

L Length of the warehouse
W Width of the warehouse
a The number of aisles
b The number of cross-aisles
ld The position of the depot in the warehouse
d() Distance metric for locations in the warehouse
v Picker speed
tp Pick time: the time to retrieve one item from its storage location and place it into the cart
c Batching capacity: the maximum number of orders in a batch
no The number of orders
oj = {s1j , ...s

l
j} The set of items requested by the jth order, j ∈ [no], l ∈ N

rj Release time of order oj , j ∈ [no], r1 ≤ ... ≤ rn
r(s) Release time of an item s, equals the release time of its respective order, r(s) := rj if s ∈ oj

ni Total number of items, ni :=
no∑
j=1

|oj |

S The set of all ordered items of the instance, S := ∪j∈[no]oj
C(σ, s) Completion time of item s ∈ S in solution a solution σ of instance I (σ can be dropped if clear from the context)

Notation used in the DP-approach
O The sequence of orders sorted with respect to their release times
Θk = (s,mo, Sbatch, Opend) A state at stage k ∈ [ni + 1] ∪ {0};

for k ∈ [ni], k items have been picked at this state; Θ0 is the initial state; Θni+1 is the terminal state;
s ∈ S ∪ ld denotes the picker’s current position;
mo ∈ [c] ∪ {0} counts the number of orders currently assigned to the open batch;
set Sbatch ⊆ S accommodates the items of the orders from the current batch which have not been picked yet;
Opend|O is the sequence of pending orders

X(Θk) Set of feasible transitions from state Θk

f(Θk, xk) Transition function for state Θk at stage k and the feasible transition xk ∈ X(Θk); the image is a state at the next stage Θk+1

g(Θk, xk) Cost of a feasible transition xk ∈ X(Θk) at state Θk , corresponds to the traveled distance
Ω(Θk) Value of state Sk; the earliest possible time to reach state Sk

• π(σ̂) = π̃: The visiting sequence of picking locations in σ̂ is identical to that of σ̃

• The sequence of batches πbatches(σ̂) results from the sequence of batches π̃batches by replacing B̃l, B̃l+1 with
one single batch Bl = B̃l ∪ B̃l+1.

Proof. By construction, σ̂ is a feasible solution, for instance, πbatches(σ̂) represents a mutually disjoint partition of the
orders into batches and each batch contains at most c orders. What remains to show, is that z(σ̃) ≤ z(σ̂).

Recall that both solutions have the same visiting sequence of the picking locations π(σ̂) = π̃. Let compute the schedule
of both solutions σ̃ and σ̂ as described in (3) and (4). It is straightforward to see that C(π̃[i]) = C(π(σ̂)[i]),∀i ∈ [ni].
By the definition of the objective function in (1), it follows that z(σ̃) ≤ z(σ̂).

3 Dynamic program

In this section, we describe the developed exact solution algorithm – the dynamic program (DP). Sections 3.1 describes
the state graph and Sections 3.2 states the Bellman equation for OBSRP-R with both alternative cart technologies,
respectively. We highlight the DP specifics in the cases of a pushcart and of a robotic cart directly in the text. Afterward,
Section 3.3 discusses several dominance relations, which we use to speed up the developed exact solution approach.

3.1 State graph

Recall that we sort the orders non-decreasingly with respect to their release times. Let denote this sorted sequence of
orders as O and, for convenience, abbreviate the expression "O′ is an ordered subsequence of O" as O′|O.

We reinterpret OBSRP-R as a sequential optimization problem with k ∈ {0, 1, ..., ni, ni + 1} stages. At stage k ≤ ni,
the picker has picked k items and, given the current state (such as her location, available bins in the cart etc.), faces a
subproblem to optimally pick the remaining items of the remaining orders. Her immediate decision at stage k is about
the next item to collect. Stage ni + 1 is reserved for the terminal state as explained below. We depict the resulting
sequential problem as a state graph. The nodes of this graph are called states. The directed edges depict transitions
between the states of the subsequent stages and are associated with decisions.

5
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States. We define state Θk at stage k ∈ [ni] as a tuple of the following four variables:

Θk ∈ {(s,mo, Sbatch, Opend)|s ∈ S,mo ∈ {0, 1, . . . , c}, Sbatch ⊆ S,Opend|O} (8)

Variable s ∈ S denotes the picker’s current position, which coincides with the picking location of the last picked
item. Integer mo ∈ {0, 1, . . . , c} counts the number of orders currently assigned to the open batch. The set Sbatch ⊆ S
accommodates the items of the orders from the current batch, which have not been picked yet. Sequence Opend|O is the
sequence of pending orders, no items of which have been picked so far.

In the initial state at stage k = 0, the picker is in the depot with an empty cart: Θ0 = (ld, 0, {}, O). The last stage
k = ni + 1 consists of one state, which we dub terminal state. In the case of a robot, it is a dummy state. In
the case of a pushcart, the terminal state describes the picker’s return to the depot with all the orders processed:
Sni+1 = (ld, 0, {}, ()).

States of type Θk = (s, 0, {}, Opend) with Sbatch = ∅ and mo = 0 mark a completed batch in the designed state graph, s
is the last picked item of this batch. In OBSRP-R with a pushcart, the picker will accompany the completed batch to the
depot. In OBSRP-R with a robotic cart, the picker proceeds directly to the first item of the subsequent batch, since the
loaded robotic cart returns to the depot autonomously. We call these states as batch-completion states in the following.

Transitions. We denote a set of feasible decisions, or feasible transitions, from state Θk at stage k ≤ ni as X(Θk).
The transition function f(Θk, xk) = Θk+1 describes the next state after the execution of the decision xk ∈ X(Θk) at
state Θk, and we denote the costs of the corresponding transition as g(Θk, xk). The set of feasible transitions and the
associated costs differ depending on the cart technology – a pushcart or a robotic cart –, as we explain below.

At stage k = ni, there is one only feasible transition in each state Θni , which is to move to the terminal state.
Transition costs in case of a pushcart equal the walking distance from the last visited picking location to the depot,
g(Θni , xni) := d(s, ld), since the picker returns the cart to the depot. In case of a robotic cart, g(Θni , xni) := 0.

At the remaining stages k = {0, 1, . . . , ni − 1}, transitions xk ∈ X(Θk) refer to the selection of the next picking
item sk+1, and, potentially to the decision of extending- or completing the currently open batch. In case of a robotic
cart, transition costs always equal g(Θk, xk) = d(sk, sk+1), which corresponds to the distance between the current
location sk and the next picking location sk+1 of the picker. In the case of a pushcart, transition costs differ between
the batch-completion states and the remaining states, because the picker has to return the cart to the depot after
the batch is completed. Therefore, g(Θk, xk) = d(sk, ld) + d(ld, sk+1) if Θk is a batch-completion state, and
g(Θk, xk) = d(sk, sk+1) else.

Table 2 describes feasible transitions for OBSRP-R with a pushart. Lines 1 and 2 describe transitions from a batch-
completion state. These transitions initiate a new batch. Note that, if the next batch starts by picking an item from a
single-item order, the picker has two alternatives: Either to pick this item as part of a larger batch (line 1) or to limit
the batch to this one order only (line 2). In lines 3 - 7 and 10, the currently open batch is extended by a pending order.
Thereby, in lines 3 to 6, there are still empty bins in the current batch (mo < c), but all the items of the already assigned
orders have been collected. If an item sk+1 from a single-item order is selected to be picked next, two alternatives must
be distinguished: either the batch is completed by this order (i.e., the next state Θk+1 is a batch-completion state, see
lines 4 and 6), or further orders will be assigned to the current batch (lines 3 and 5). In lines 8-9 and 11-13, at least one
item from a commenced order remains in Sbatch. Similarly to previous transitions, if one item remains in Sbatch and
the batching capacity has not been depleted (mo ≤ c− 1) (lines 11 and 12), the picker can either close the batch after
picking this remaining item and move to a batch-completion state (see line 12), or proceed by extending further the
current batch (line 11).

Similarly, Table 3 defines feasible transitions for OBSRP-R with a robotic cart. The construction of the transitions
follows the same logic as in the case of a pushcart. Observe, however, that we prohibit weakly dominated solutions
described in Proposition 1 and force the picker to close the current batch and initiate a new one as soon as she has
collected all the items of the currently assigned orders.

The next Proposition claims a one-to-one correspondence between the paths in the constructed state graph and the
solution space of OBSRP-R.
Proposition 2. For a particular OBSRP-R instance with a pushcart, each path from the initial state to the terminal
state in the constructed state graph corresponds to exactly one feasible solution for this instance and vice-versa.

In the case of a robotic cart, each path from the initial state to the terminal state in the constructed state graph
corresponds to exactly one feasible solution in the reduced solution space by Proposition 1, and vice-versa.

Proof. For both cart technologies - pushcart and robotic cart - the first entry in each state of the state graph at stage
k ∈ [ni] represents one picked item, thus, the sequence of these entries in a path of states corresponds to exactly one

6
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Table 2: OBSRP-R with a pushcart: Feasible transitions at stages k = {0, 1, . . . , ni − 1}
Current state Transition New state
Θk xk ∈ X(Θk) Θk+1 = f(Θk, xk)

1 (sk, 0, {}, Opend) ∀sk+1 ∈ oj , oj ∈ Opend (sk+1, 1, oj \ {sk+1}, Opend \ oj)

2 -//- ∀sk+1 ∈ oj , oj ∈ Opend, |oj | = 1 (sk+1, 0, {}, Spend
k \ oj)

3 (sk,m
o, {}, Opend), 0 < mo < c − 1 ∀sk+1 ∈ oj , oj ∈ Opend (sk+1,m

o + 1, oj \ sk+1, O
pend \ oj)

4 -//- ∀sk+1 ∈ oj , oj ∈ Opend, |oj | = 1 (sk+1, 0, {}, Opend \ oj)

5 (sk,m
o, {}, Opend),mo = c − 1 ∀sk+1 ∈ oj , oj ∈ Opend, |oj | > 1 (sk+1,m

o + 1, oj \ sk+1, O
pend \ oj)

6 -//- ∀sk+1 ∈ oj , oj ∈ Opend, |oj | = 1 (sk+1, 0, {}, Opend \ oj)

7 (sk,m
o, Sbatch, Opend), 0 < mo ≤ c − 1, |Sbatch| > 1 ∀sk+1 ∈ oj , oj ∈ Opend (sk+1,m

o + 1, Sbatch ∪ oj \ sk+1, O
pend \ oj)

8 -//- ∀sk+1 ∈ Sbatch (sk+1,m
o, Sbatch \ {sk+1}, Opend)

9 (sk,m
o, Sbatch, Opend),mo = c, |Sbatch| > 1 ∀sk+1 ∈ Sbatch (sk+1,m

o, Sbatch \ {sk+1}, Opend)

10 (sk,m
o, Sbatch, Opend), 0 < mo ≤ c − 1, |Sbatch| = 1 ∀sk+1 ∈ oj , oj ∈ Opend (sk+1,m

o + 1, Sbatch ∪ oj \ sk+1, O
pend \ oj)

11 -//- ∀sk+1 ∈ Sbatch (sk+1,m
o, {}, Opend)

12 -//- ∀sk+1 ∈ Sbatch (sk+1, 0, {}, Opend)

13 (sk,m
o, Sbatch, Opend),mo = c, |Sbatch| = 1 ∀sk+1 ∈ Sbatch (sk+1, 0, {}, Opend)

Note. Lines 1 and 2 refer to a transition from a batch-completion state with transition costs of g(Θk, xk) = d(sk, ld) + d(ld, sk+1).
The costs of the remaining transitions equal g(Θk, xk) = d(sk, sk+1).

Table 3: OBSRP-R with a robotic cart: Feasible transitions at stages k = {0, 1, . . . , ni − 1}
Current state Transition New state
Θk xk ∈ X(Θk) Θk+1 = f(Θk, xk)

1 (sk, 0, {}, Opend) ∀sk+1 ∈ oj , oj ∈ Opend, |oj | > 1 (sk+1, 1, oj \ {sk+1}, Opend \ oj)

2 -//- ∀sk+1 ∈ oj , oj ∈ Opend, |oj | = 1 (sk+1, 0, {}, Spend
k \ oj)

3 (sk,m
o, Sbatch, Opend), 0 < mo ≤ c − 1, |Sbatch| > 1 ∀sk+1 ∈ Sbatch (sk+1,m

o, Sbatch \ {sk+1}, Opend)

4 -//- ∀sk+1 ∈ oj , oj ∈ Opend (sk+1,m
o + 1, Sbatch ∪ oj \ sk+1, O

pend \ oj)

5 (sk,m
o, Sbatch, Opend), 0 < mo ≤ c − 1, |Sbatch| = 1 ∀sk+1 ∈ Sbatch (sk+1, 0, {}, Opend)

6 -//- ∀sk+1 ∈ oj , oj ∈ Opend (sk+1,m
o + 1, Sbatch ∪ oj \ sk+1, O

pend \ oj)

7 (sk,m
o, Sbatch, Opend),mo = c, |Sbatch| > 1 ∀sk+1 ∈ Sbatch (sk+1,m

o, Sbatch \ {sk+1}, Opend)

8 (sk,m
o, Sbatch, Opend),mo = c, |Sbatch| = 1 ∀sk+1 ∈ Sbatch (sk+1, 0, {}, Opend)

Note. The costs of all transitions equal g(Θk, xk) = d(sk, sk+1).

visiting sequence of picking locations π. A partitioning of this sequence into batches can be derived by closing one
batch after each visit of a batch-completion state and opening a new batch with the picking location of the following
state. By construction, the resulting batches form a disjoint partition of all no orders of the instance, and each batch
contains at most c orders. In the case of a robotic cart, lines 2, 5, and 8 of Table 3 enforce a batch-completion state in
each path through the state graph each time all the items from the commenced orders of the batch are picked. Thus, none
of the feasible solutions that correspond to a path in the state graph is weakly dominated in the sense of Proposition 1.

The other way around, each feasible solution, which is non-dominated in the sense of Proposition 1 in the case of
a robotic cart, translates to exactly one path of states connected by transitions from Tables 2 and 3 in the case of a
pushcart and robotic cart, respectively, by construction.

3.2 Bellman equations

Let define the value Ω(Θk) of state Θk at any stage k as the earliest possible time to reach this state starting from the
initial state in the state graph. We set the value of the initial state Θ0 to be 0: Ω(Θ0) := 0. By this definition, the
optimal objective value for OBSRP-R instance I is the value of the terminal state Θni+1 in the respective state graph.

We compute state values in a forward-induction manner starting from initial state Ω(Θ0) by using the following Bellman
equations, which are valid for OBSRP-R with both cart technologies – a pushcart and a robotic cart:

Ω(Θk+1) =

{
min(Θk,xk)∈f−1(Θk+1){max{r(s),Ω(Θk) +

1
v · g(Θk, xk)}+ tp} ∀k ∈ {0, ..., ni − 1}

min(Θk,xk)∈f−1(Θk+1){Ω(Θk) +
1
v · g(Θk, xk)} for k = ni (9)

Function f−1(Θk+1) = {(Θk, xk) | Θk is a state at stage k, xk ∈ X(Θk), and f(Θk, xk) = Θk+1} is a reverse
transition function and represents the set of all feasible transitions to reach Θk+1 from some state Θk at stage k
(see Tables 2 and 3). Release time r(s) refers to the current location of the picker in the respective state Θk =
(s,mo, Sbatch, Opend).

By construction, the values of states Θk at stages k ∈ [ni] correspond to the earliest possible completion time C(s)
of picking the last item s ∈ S of this state among all the possible feasible partial solutions described by the state

7
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(cf. equations (3)-(6) in Section 2). Similarly, the optimal objective value, i.e. the minimal total completion time for
OBSRP-R instance I , is the value of the terminal state Θni+1 in the respective state graph, see objectives (1) and (2).

3.3 Dominance rules for transitions in the DP formulation

In this section, we show how some transitions in the state graph of the dynamic program can be omitted, and, thus, the
complexity of the DP can be reduced, without compromising its optimality. We say that a transition in the state graph is
weakly dominated, if, for every path from the initial to the terminal state involving this transition, the corresponding
feasible solution of the instance (see Proposition 3.1) is weakly dominated by some other feasible solution whose path
from the initial to the terminal state that does not involve this transition.

Propositions 3, 4 and 5, define dominance rules for transitions, which prohibit the picker selecting items s for the next
pick, whose release time r(s) lies too far into the future. The rules leverage the properties of the warehouse metric d().

The following proposition holds both for OBSRP-R with a pushcart and for OBSRP-R with a robotic cart.
Proposition 3. Consider a current state Θk = (sk,m

o, Sbatch, Opend) with |Sbatch| ≥ 1. Then any transition
xk ∈ X(Θk) that visits next picking location sk+1 ∈ oj , oj ∈ Opend is weakly dominated, if

rj ≥ Ω(Θk) +
1

v
· 2(W + L) + tp (10)

Proof. See Appendix 4.1.

Note that the expression 1
v · 2(W + L) + tp in (10) is an upper bound for the time needed by the picker to start in any

location of the warehouse, move to the picking location of any ordered item, complete the picking of the latter and
move to any other location in the warehouse. In other words, Proposition 3 prohibits selecting item sk+1 with a late
release time, if there is another item in a commenced order of the current batch (|Sbatch| ≥ 1) that can be picked first.

The next proposition holds in the case of a pushcart.
Proposition 4. Consider a current state Θk = (sk,m

o, {}, Opend) with mo > 0. Then any transition xk ∈ X(Θk)
that visits next picking location sk+1 ∈ oj , oj ∈ Opend is weakly dominated for OBSRP-R with a pushcart, if

rj ≥ Ω(Θk) +
1

v
· 2(W + L) (11)

Proof. See Appendix 4.2.

In this case, the expression 1
v · 2(W + L) in (11) is an upper bound for the time needed by the picker to start in

any location of the warehouse, visit the depot, and move to any other location in the warehouse. In other words,
Proposition 4 requires completing the current batch before moving to item sk+1 with a late enough release time, if all
the items of the commenced orders in the current batch have been picked.

Finally, Proposition 5 describes dominance relations for feasible transitions from batch-completion states for both
alternative cart technologies. It prevents starting a new batch with a pending order oj ∈ Opend that has a late release
time, if we can complete another pending order oj in a one-order batch first.

Proposition 5. Consider a current state Θk = (sk, 0, {}, Opend). Then, any transition xk ∈ X(Θk) that visits next
picking location sk+1 ∈ oj , oj ∈ Opend is dominated, if there exists oj ∈ Opend such that

rj ≥ max{Ω(Θk); rj}+
1

v
· UB(oj) + |oj | · tp in case of a robotic cart (12)

rj ≥ max{Ω(Θk) +
1

v
· d(sk, ld); rj}+

1

v
· (UB(oj) +W + L) + |oj | · tp in case of a pushcart (13)

Thereby, UB is an upper bound for the minimum travel distance to visit all picking locations in oj , starting and ending
in fixed, given points in the warehouse.

Proof. See Appendix 4.3.

Appendix 4.4 suggests UB(oj) := (naisles(oj) + 1)W + 2L, for any order oj , where naisles(oj) equals the number of
aisles that contain the picking locations of oj . The summand UB(oj) +W + L in (13) refers to the minimum walking

8
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distance to complete (oj) in a closed tour from the depot, and then move to an arbitrary next picking location in the
warehouse.

In the designed algorithm, we apply the dominance relations of Propositions 3-5 as follows. In each state Θk, transitions
xk ∈ X(Θk), which select the next item sk+1 to pick, are considered in the non-decreasing order of the release times of
these items. By the nature of the dominance rules (10)-(13), if one transition is weakly dominated, then all the following
transitions from Θk are weakly dominated as well. Algorithm 1 describes the implementation of the dominance rules
from Propositions 3 and 5 in the case of a robotic cart. The implementation of the dominance rules in the case of a
pushcart follows the similar lines.

Algorithm 1: Construction of non-dominated transitions from state Θk = (sk,m
o, Sbatch, Opend)

1 Let oj ∈ Opend be the first order with the minimum release time in Opend.

2 for all sk+1 ∈ Sbatch in arbitrary order do
3 perform applicable transition(s) of Table 3
4 end
5 for all oj ∈ Opend in the given order of Opend do
6 if ( |Sbatch| ≥ 1 and inequality (10) is True ) or (m0 = 0 and inequality (12) is True ) then
7 break and go to line 13;
8 else
9 for all sk+1 ∈ oj in arbitrary order do

10 perform applicable transition(s) of Table 3
11 end
12 end
13 end

Note. Case of a robotic cart
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4 Appendix

4.1 Proof of Proposition 3

In this section, we consider an arbitrary instance I for OBSRP-R and show that the dominance rule claimed in
Proposition 3 is valid for both cart technologies - a pushcart and a robotic cart.

We use Lemma 1 to define a set D1 of feasible solutions for OBSRP-R instance I that are weakly dominated by other
feasible solutions. In the second step, Lemma 2 states that every path from the initial state to the terminal state in the
constructed state graph, which involves a transition xk, k ∈ [ni − 1] described by Proposition 3, is associated to a
solution which is either in set D1, or, which is weakly dominated by a solution in set D1. Thus, by definition, transition
xk is weakly dominated.

Lemma 1. Consider any feasible solution σ̂ with a visiting sequence of picking locations π̂ and the respective
sequence of batches π̂batches such that:

• Some item π̂[i+ 1] has a late release date:

r(π̂[i+ 1]) ≥ C(π̂[i]) +
1

v
· 2(W + L) + tp (14)

• There exists some order oĵ , some items of which are picked before item π̂[i+ 1] and some items of which are
picked after item π̂[i+ 1]. Let denote an item of oĵ , which is picked after item π̂[i+ 1] in σ̂ as s†.

Let decompose the visiting sequence of σ̂ as follows: π̂ = (π̂I , π̂[i+ 1], π̂II), i.e. π̂I and π̂II denote the subsequences
before and after the visit of location π̂[i+ 1], respectively.

Then the following solution σ̃ weakly dominates solution σ̂:

• πbatches(σ̃) = π̂batches

• π(σ̃) = (π̂I , s†, π̂[i+ 1], π̂II \ s†), where π̂II \ s† is the sequence π̂II after removing item s†.
In other words, solution σ̃ collects item s† immediately before item π̂[i+ 1].

Proof. By construction, σ̃ is a feasible solution. What remains to show, is that z(σ̃) ≤ z(σ̂).

Let compute the schedule of both solutions σ̃ and σ̂ as described in (3)- (6). Since some items of order oĵ are picked
before item π̂[i+ 1] and since s† also belongs to order oĵ :

r(s†) ≤ C(π̂[i]) (15)

Let denote item π̂[i + 1] as s⋆. Observe that in solution σ̃, item s⋆ is picked immediately after visiting location s†.
Furthermore, in both σ̃ and σ̂, items π̂[i], s⋆ and s† are in the same batch and the visiting sequences of the first i
items are the same in σ̃ and σ̂. By applying (6) and (4) in the cases of a pushcart and a robotic cart, respectively, the
completion time of item s⋆ in solution σ̃ is:

C(s⋆, σ̃) =max{C(s†) +
1

v
d(s†, s⋆), r(s⋆)}+ tp (16)

=max{max{C(π̂[i]) +
1

v
d(π̂[i], s†), r(s†)}+ tp +

1

v
d(s†, s⋆), r(s⋆)}+ tp (17)

=max{C(π̂[i]) +
1

v
d(π̂[i], s†) + tp +

1

v
d(s†, s⋆), r(s⋆)}+ tp (18)

≤r(s⋆) + tp, (19)

where the equality (17) follows from (15) and the subsequent inequality (18) follows from (14) and the following
observation:

1

v
(d(π̂[i], s†) + d(s†, s⋆)) ≤ 1

v
2(W + L) (20)

which holds by the bounded dimensions of the warehouse, i.e, the maximum distance between two points in the
warehouse equals the warehouse length plus the warehouse width, L+W .

10
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Similarly, by applying (4) and (6) in the case of a robotic cart and pushcart, respectively, the completion time of item s⋆

in solution σ̂ cannot be smaller, since:

C(s⋆, σ̂) = max{C(π̂[i]) +
1

v
· d(π̂[i], s⋆), r(s⋆)}+ tp ≥ r(s⋆) + tp (21)

In other words:

C(s⋆, σ̃) ≤ C(s⋆, σ̂) (22)

After applying (4) or (6) – depending on the type of cart – to compute the completion times of the remaining items and
observing that the distances are metric and that the sequences of the visiting locations after picking s⋆ coincide in σ̃ and
σ̂, but σ̃ excludes the location of the already picked item s†, we receive that z(σ̃) ≤ z(σ̂).

We denote the set of the weakly dominated feasible solutions σ̂ described by Lemma 1 as D1.

Note that in the case of a robotic cart, the dominating feasible solution σ̃ of Lemma 1 might be dominated itself by
another feasible solution in the reduced solution space, if it fulfills the characteristics of Proposition 1.

In Proposition 3.1, we have established the one-to-one correspondence between feasible solutions of an instance I and
the paths from the initial state to the terminal state in the corresponding state graph. Lemma 2 uses this relation to
complete the proof.
Lemma 2. Consider a feasible transition xk ∈ X(Θk) from a state Θk = (sk,m

o, Sbatch, Opend) with |Sbatch| ≥ 1,
that dictates a next picking location sk+1 ∈ oj , oj ∈ Opend with the following property

rj ≥ Ω(Θk) +
1

v
· 2(W + L) + tp (23)

Then, any path from the initial to the terminal state in the state graph that involves xk either belongs to the class of
dominated solutions D1 described by Lemma 1, or is dominated by a solution of class D1 .

Proof. First, note that the item sk+1 of Lemma 2 corresponds to item π̂[i + 1] in Lemma 1, and that r(sk+1) = rj
given that sk+1 ∈ oj . Because |Sbatch| ≥ 1, there exists some order oĵ , some items of which are picked before item
sk+1, and some items of which are picked after sk+1, in any path through the state graph that uses transition xk.

By definition, the value Ω(Θk) is the shortest time to reach state Θk through a path of feasible transitions from the
initial state in the state graph. Let P shortest be such a shortest path of transitions to state Θk.

First, consider any path from the initial to the terminal state of the state graph that reaches state Θk through P shortest,
followed by xk. By definition, the completion time of sk in the corresponding solution σ̂ to such a path is C(sk, σ̂) =
Ω(Θk). Thus, because of (23), property (14) also holds for σ̂ and therefore, σ̂ belongs to the set of weakly dominated
solutions D1.

Second, consider any path that reaches state Θk through a path different from P shortest from the initial state, and then
uses transition xk and continues through some path P end of transitions toward the terminal state. By definition, the
solution corresponding to such a path is dominated by the solution σ̂ associated with path (P shortest, xk, P

end) which
belongs to the set D1.

4.2 Proof of Proposition 4

We proceed along similar lines as in Section 4.1. For an arbitrary instance I of OBSRP-R with a pushcart, we use
Lemma 3 to define the set D2 of feasible solutions for I that are weakly dominated by another feasible solution. In the
second step, Lemma 4 states that every path from the initial state to the terminal state in the constructed state graph,
which involves a transition xk, k ∈ [ni − 1] described by Proposition 4, is associated to a solution which is either in set
D2, or, which is weakly dominated by a solution in set D2. Thus, by definition, transition xk is weakly dominated.
Lemma 3. Consider any feasible solution σ̂ with a visiting sequence of picking locations π̂ and the respective
sequence of batches π̂batches such that:

• Some item π̂[i+ 1] that belongs to some batch B̂l ∈ π̂batches has a late release date:

r(π̂[i+ 1]) ≥ C(π̂[i]) +
1

v
· 2(W + L) (24)
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• This batch B̂l = B̂I
l ∪ B̂II

l can be partitioned into two sets of orders B̂I
l and B̂II

l such that

– B̂I
l and B̂II

l are picked subsequently in π̂B̂l = (π̂B̂l,I , π̂B̂l,II),

– item π̂[i+ 1] is the first item in the sequence π̂B̂l,II .

Then the following solution σ̃ weakly dominates solution σ̂:

• Orders of B̂I
l and B̂II

l are picked in separate batches, whereas the remaining batches and their sequence
remain the same: πbatches(σ̃) = (B̂1, . . . , B̂l−1, B̂

I
l , B̂

II
l , B̂l+1, . . .)

• π(σ̃) = π̂, i.e. the sequences of picking locations coincide.

Proof. The proof proceeds along the same lines as the proof of Lemma 1. By construction, σ̃ is a feasible solution.
What remains to show, is that z(σ̃) ≤ z(σ̂).

Let denote item π̂[i+1] as s⋆. We apply equations (6) and notice that the expression 1
v ·2(W +L) is an upper bound for

the time needed by the picker to start in any location of the warehouse, move to the depot and, afterward, move to any
other location in the warehouse. Given this, we receive that C(s⋆, σ̃) ≤ C(s⋆, σ̂). Relation z(σ̃) ≤ z(σ̂) immediately
follows from (6), metric distance measure d(), and the definition of the objective function (2).

Let denote the set of weakly dominated solutions σ̂ introduced in Lemma 3 as D2. Lemma 4 associates each path
through the state graph that involves a transition xk described by Proposition 4 to a weakly dominated solution and
thereby closes the proof.

Lemma 4. Consider a feasible transition xk ∈ X(Θk) from a state Θk = (sk,m
o, {}, Opend) with mo ≥ 1, that

dictates a next picking location sk+1 ∈ oj , oj ∈ Opend with the following property

rj ≥ Ω(Θk) +
1

v
· 2(W + L) (25)

Then, any path from the initial to the terminal state in the state graph that involves xk either belongs to the set of weakly
dominated solutions D2 described by Lemma 1, or is weakly dominated by a solution in the set D2 .

Proof. First, note that the item sk+1 of Lemma 4 corresponds to item π̂[i+1] in Lemma 3, and that r(sk+1) = rj since
sk+1 ∈ oj . Given that Sbatch = {} and mo ≥ 1 in state Θk, item sk+1 belongs to batch B̂l that can be decomposed as
follows: B̂l = B̂I

l ∪ B̂II
l , where B̂I

l is a set of orders for which all items have already been picked by the time state Θk

is reached, and B̂II
l is a set of completely unprocessed orders at state Θk, one of which includes item sk+1.

Using the same arguments as in the proof of Lemma 2, each path from the initial to the terminal state of the state graph
that involves transition xk ∈ X(Θk) completes the picking of item sk either at time C(sk, σ̂) = Ω(Θk) or at a later
time. In the first case, property (25) translates to property (24), and thus the path is associated with a weakly dominated
solution in the set D2. In the second case, the solution associated with the path is weakly dominated by a solution in
D2, see Lemma 2 for an explicit construction.

4.3 Proof of Proposition 5

Again, the proof of Proposition 5 follows the same lines as the one presented in Section 4.1. We will limit the exposition
of the proof to the case of a robotic cart. The proof for the case of a pushcart follows analogously.

Consider an instance I for OBSRP-R. Lemma 5 identifies a set D3 of feasible solutions, that are weakly dominated by
another feasible solution.

Lemma 5. Consider any feasible solution σ̂ with a visiting sequence of picking locations π̂ = (π̂I , π̂II) and the
respective sequence of batches π̂batches, |π̂batches| = f̂ ∈ N such that:

• The first subsequence π̂I contains all the items of orders oj ∈ B̂1 ∪ B̂2 ∪ . . .∪ B̂l and the second subsequence
π̂II contains the items of the remaining orders oj ∈ B̂l+1 ∪ . . . ∪ B̂f̂ for some l ∈ [f̂ − 1]. Let denote the
last location of the first subsequence π̂I as π̂[i] and the first location of the second subsequence as π̂[i+ 1],
respectively.
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• There exists an order oĵ ∈ B̂l+1 ∪ . . .∪ B̂f̂ , whose items are picked in the second subsequence π̂II in σ̂, which
satisfies the following relation:

r(π̂[i+ 1]) ≥ max{C(π̂[i]), rĵ}+
1

v
· UB(oĵ) + |oĵ | · t

p, (26)

where UB(oĵ) is an upper bound for the minimum travel distance to start at the picking location π̂[i], pick all items
in order oĵ and end in any fixed but arbitrary location in the warehouse, which can be computed as described in
Section 4.4 in the Appendix.

Then the following solution σ̃ is feasible and weakly dominates σ̂:

• π(σ̃) = (π̂I , πĵ , π−ĵ) with πĵ representing a visiting sequence of the picking locations in order oĵ of travel

distance at most UB(oĵ), and π−ĵ |π̂II representing the subsequence of π̂II after removing all the items of
order oĵ:
In other words, solution σ̃ picks the items of order oĵ directly after π̂I and then resumes visiting the remaining
locations in the same order as in σ̂.

• πbatches(σ̃) = (B̂1, . . . , B̂l, {oĵ}, B̂l+1 \ {oĵ}, . . . B̂f̂ \ {oĵ}),

i.e., in solution σ̃, order oĵ is collected as a separate batch directly after batch B̂l.

Proof. By construction, σ̃ is a feasible solution, for instance, πbatches(σ̃) represents a mutually disjoint partition of the
orders into batches and each batch contains at most c orders. What remains to show, is that z(σ̃) ≤ z(σ̂).

Let compute the schedule of both solutions σ̃ and σ̂ as described in (3) and (4). Let denote item π̂[i+ 1] as s⋆. Observe
that in solution σ̃, item s⋆ is picked after all the items of order oĵ are collected in some sequence πĵ . By applying (4)
and observing that the sequences of visiting locations for the first i items are the same in σ̃ and σ̂, the completion time
of this item in solution σ̃ is:

C(s⋆, σ̃) ≤max{max{C(π̂[i]), rĵ}+
1

v
d(π̂[i], πĵ , s⋆) + |oĵ | · t

p; r(s⋆)}+ tp (27)

≤max{max{C(π̂[i]), rĵ}+
1

v
· UB(oĵ) + |oĵ | · t

p; r(s⋆)}+ tp (28)

= r(s⋆) + tp, (29)

where d(π̂[i], πĵ , s⋆) is the distance traveled to pick the items of oĵ starting from π̂[i] and ending in s⋆ in the sequence

πĵ .

By applying (4), the completion time of item s⋆ in solution σ̂ cannot be smaller, since:

C(s⋆, σ̂) = max{C(π̂[i]) +
1

v
· d(π̂[i], s⋆), r(s⋆)}+ tp ≥ r(s⋆)}+ tp (30)

In other words:

C(s⋆, σ̃) ≤ C(s⋆, σ̂) (31)

After applying (4) to compute the completion times of the remaining items and observing that the distances are metric
and that the sequences of the visiting locations after picking s⋆ coincide in σ̃ and σ̂, but σ̃ excludes the locations of the
items from the already picked order oĵ , we receive that z(σ̃) ≤ z(σ̂).

Let denote by D3 the set of weakly dominated solutions σ̂ described by Lemma 5. The following Lemma 6 uses
the one-to-one correspondence between feasible solutions for an instance and paths in the corresponding state graph
from the initial- to terminal state (see Proposition 3.1), to associate any transition xk described by Proposition 5 to a
dominated solution in D3. By definition, this closes the proof.
Lemma 6. Consider a feasible transition xk ∈ X(Θk) from a state Θk = (sk, 0, {}, Opend) , that dictates a next
picking location sk+1 ∈ oj , oj ∈ Opend with the following property

rj ≥ max{Ω(Θk); rĵ}+
1

v
· UB(oĵ) + |oĵ |+ tp (32)
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Figure 3: Illustrative example for the computation of UB(oj)
Note. Picker route, starting in s and ending in t, for picking order oj with 7 picking locations (blue circles) distributed in naisles(oj) = 4
aisles, in a warehouse of length L and width W . The picker first covers distance lmin

s +(W −wmin
s ) from s to an outer corner. Then

she moves to the opposite side of the warehouse in an S-shape motion, traversing all naisles(oj) aisles that contain picking locations
completely, and covering the distance of naisles(oj) ·W + L. Finally, she moves from a corner toward t in distance wmin

t + lmin
t .

The corners have been selected such that the total traveling distance is not greater than UB(oj) = (naisles(oj) + 1)W + 2L.

for some oĵ ∈ Opend. Then, any path from the initial to the terminal state in the state graph that involves xk either
belongs to the set of dominated solutions D3 described by Lemma 5, or is dominated by a solution in D3 .

First, note that the items sk and sk+1 of Lemma 6 correspond to items π̂[i] and π̂[i+ 1] in Lemma 1, respectively, and
that r(sk+1) = rj given that sk+1 ∈ oj . Since mo = 0 in Thetak, a new batch is initiated by the pick of sk+1.

Using the same arguments as in the proof of Lemma 2, each path from the initial to the terminal state of the state graph
that involves transition xk ∈ X(Θk) completes the picking of item sk either at time C(sk, σ̂) = Ω(Θk) or at a later
time. In the first case, property (32) translates to property (26), and thus the path is associated to a weakly dominated
solution in the class D3. In the second case, the solution associated to the path is weakly dominated by a solution in D3,
see Lemma 2 for an explicit construction.

4.4 Upper bound for picking all items of an order

In this section, we show that the proposed upper bound UB(oj) = (naisles(oj) + 1)W + 2L for the minimum travel
distance to visit all picking locations in an order oj , j ∈ [no], starting and ending in fixed, given points in the warehouse,
is indeed valid. Thereby, the expression naisles(oj) represents the number of aisles that contain the picking locations
of oj . We will show how to construct a picker route of maximum distance UB(oj) for an arbitrary order oj , starting
location s, and end ending location t.

Let us call an intersection of an outer aisle and an outer cross-aisle a corner. Consider the following routing strategy
(see Figure 3): Move from s to some corner of the warehouse, visit all the picking locations following an S-shape route
starting from this (first) corner and ending in the respective last corner, after that move to t. The S-shape route traverses
all naisles(oj) aisles which contain at least one picking location completely and therefore takes time (naisles(oj) ·W +L).
By a smart selection of the first corner, where we start this S-shape route, the total time ζ to reach this first corner from
s and then reach t from the last corner, does not exceed (W + L).

Let wmin
s and wmin

t be the shortest horizontal distances from s and t to reach an outer cross-aisle, respectively (see
Figure 3). Observe that wmin

s ≤ 0.5 ·W and wmin
t ≤ 0.5 ·W . If wmin

s ≤ wmin
t , the picker shall move from s along

wmin
s , then:

vertical component of ζ

≤ wmin
s +max{W − wmin

t , wmin
t } ≤ W (33)

14
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If wmin
s ≥ wmin

t , the picker shall select the first corner such, that she can move from the last corner to t along wmin
t ,

then:

vertical component of ζ

≤ max{W − wmin
s , wmin

s }+ wmin
t ≤ W. (34)

By examining lmin
s and lmin

t , which are the shortest horizontal distances from s and t to reach an outer aisle, respectively,
we receive that the horizontal component of ζ ≤ L.
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