
Working Paper Series
of the Chair of Management Science /

Operations and Supply Chain Management
University of Passau

Resolving the curse of poor data quality:
Optimization perspective on data collection and

validation

Benedikt Finnah, Jochen Gönsch
Mercator School of Management, University of Duisburg-Essen, Lotharstraße 65, 47057 Duisburg, Germany,

benedikt.finnah@uni-due.de, jochen.goensch@uni-due.de

Alena Otto
School of Business, Economics and Information Systems, University of Passau, Innstraße 27, 94032 Passau, Germany,

alena.otto@uni-passau.de

Companies possess large quantities of poor-quality data. The validation of which is costly, especially if the

required data accuracy is high. In this paper, we focus on a specific subset of such data which is common

across many industries and areas of business — data on precedence relations between tasks.

We formulate the data collection and validation problem (DCVP) that aims to optimize the business result

in some baseline planning problem. However, the initial data, which serves as basis for the quantification of

the baseline problem constraints, is partially incorrect. Restricted by the available time budget, an expert

dynamically receives queries about specific data entries and corrects or validates them. Thus, the DCVP is

an online optimization problem which looks for an optimal policy (interview policy) of stating such queries

to optimize the result of the baseline planning problem. Relevant solutions for the baseline planning problem

must be feasible, although initial data entries may be incorrect.

We analyze the properties of the DCVP, model the DCVP as a dynamic program, and suggest a cus-

tomized least squares temporal difference algorithm LSTD. In extensive computational experiments, the

LSTD interview policy considerably outperforms alternative ones. In a case study of a leading automo-

bile manufacturer’s assembly line, this policy substantially reduces the station’s idle time after selectively

addressing only about 8% of the data entries.

Key words : data collection and validation problem, online optimization, assembly line balancing, project

scheduling, precedence relations

History : This paper was first submitted on ... and has been with the authors for ...

1

Otto et al.: Working paper
2

1. Introduction

Poor-quality data costs companies trillions of dollars each year in terms of data correction, val-

idation, and foregone benefits resulting from managerial decisions based off of insufficient data

(Davenport 1997, Escobar et al. 2021, Redman 1998). About 84% of CEOs are concerned about

the quality of data used for decision making in their companies, according to the Forbes Insights

and KPMG report. Insufficient data quality may also undermine future technologies such as IoT

([Forbes, KPMG] 2016). Often, the only way to validate and correct the data is to do so manually,

which is time consuming and tedious. Consequently, research on how to improve the efficiency of

expert involvement in collecting and correcting data is of utmost importance.

The issue of poor-quality data is especially acute whenever the data describes hard constraints,

as is the case with the data on precedence relations between tasks. We turn to precedence relations,

because they are indispensable in almost all parts of business, including product design (de Fazio

et al. 1999, Krishnan and Ulrich 2001), assembly and manufacturing (Boysen et al. 2009), project

scheduling (Demeulemeester and Herroelen 1992, Manrique et al. 2018), construction (Wang et al.

2018), as well as transportation and logistics (Gertsbakh and Serafini 1991, Hauptmeier et al.

2001). If task i is a predecessor of task j, then task i must be completed before we can start task j.

Precedence relations, or simply relations, are usually stored as a set of ordered pairs, or partially

ordered set (poset), E = {(i, j) | i is predecessor of j}. Obviously, if some relations are missing

from E, the execution plan for tasks generated by a decision support system may be infeasible.

On the other hand, including unnecessary relations in E should be avoided because they lead to

unnecessary constraints, and the potential loss of optimality, including the wasting of resources.

Traditionally, the barriers to data collection and validation by experts are widely perceived as

very high. For example, the final car assembly consists of more than n= 1,000 tasks and precedence

relations of over n(n−1)

2
= 499,500 task pairs have to be clarified. If an expert spends around 3

minutes per task pair, we would end up with an expert mission working 24 hours /7 days a week

for almost three years! Not surprisingly, the idea of investing additional expert time in validating

data collected by unreliable (automated) methods is generally dismissed by practitioners as only

being reasonable ‘with simpler and less complicated products’ (Kashkoush and ElMaraghy 2014).

With this paper, we seek to shake this stereotype and elaborate on a focused validation of

carefully selected parts of unreliable data. The results suggest that with this focused validation,

a realistic amount of expert time can considerably improve the quality of management decisions.

This is due to the reasons seem to be overlooked in practice and in vast parts of the literature:

• Anticipation of logical implications. Before knowing the expert’s answer, we can already esti-

mate the amount of additional information (assertions) that we will be able to derive from it, so

that, given the limited expert time, we can formulate a small number of carefully selected questions.

Otto et al.: Working paper
3

Figure 1 Underlying Concept of the Data Collection and Validation Problem.

Initial maximum precedence relations set ഥ𝑬𝟎

Incudes all the required precedence relations,
but may include unnecessary precedence relations
Possible source: initial feasible task execution plan

Initial minimum precedence relations set 𝑬𝟎

Includes only required precedence relations,
but not necessarily all of them
Possible source: empty set, CAD information

Uncertain
(unvalidated)
data

Validation of
selected data
by expert

Target precedence relations set 𝑬∗

Incudes all the required precedence relations,
and only them
Challenge: unknown in practice

A

4

B
3

C

3

D

2

B C

A D

Precedence relations: Schedule for two parallel machines (𝑝 = 2||𝐶𝑚𝑎𝑥):

Example: 3 queries
“Does the following precedence relation exist?”
• A before B? – No.
• A before C? – No.
• C before D? – No.

In
it

ia
l d

at
ab

as
e

G
ro

u
n

d
 t

ru
th

B
as

e
lin

e
In

te
rv

ie
w

−

=
Forecast
Likelihood that uncertain relation can
be removed.
Possible source: previous
projects/products, CAD information

with

A

4

B
3

C

3

D

2

A

4

B
3

C

3

D

2

Exhaustive
validation
(impossible
due to limited
time)

Example: 6 queries necessary
“Does the following precedence relation exist?”
• A before B? – No.
• A before C? – No.
• C before D? – No.

• A before D? – No.
• B before C? – Yes.
• B before D? – No.

A B C D

A

0.3
B

0.2
0.1

0.8

C

0.6

D

0.2

A

B

C

D

A

B

C

D

B C

A D

B C

A D

Task execution plan
with guaranteed

feasibility, duration
𝐶𝑚𝑎𝑥 = 6

Optimal task execution
plan, duration
𝐶𝑚𝑎𝑥 = 6

Task execution plan
with guaranteed

feasibility, duration
𝐶𝑚𝑎𝑥 = 12

Optimal task execution
plan, duration
𝐶𝑚𝑎𝑥 = 6

Concept Illustration

Note. Given an initial database, the expert has to validate selected data. In the graphs, nodes denote tasks, (integer) node
labels denote their processing time, arcs are precedence relations, and arc labels state the probability that the precedence
relation is not necessary. A simple example using the two-machine scheduling problem illustrates that an intelligently structured
expert interview with three queries may be equivalent to an exhaustive data validation (of six queries) in terms of the business
result.

• Exploitation of automatically collected data. We can leverage noisy data by using, for instance,

automatically collected data as an indication of the experts’ most probable answer.

• Anticipation of optimality. We are actually interested in a subset of precedence relations that

are relevant for an optimal execution plan of tasks, which may be only a small portion of the initial

poset.

We state the data collection and validation problem (DCVP). DCVP aims at minimizing certain

objective function F (·) over the unknown target (true) poset E∗ (see Figure 1). The input to this

problem is some budget of expert time T and an initially noisy poset E0, which includes at least

one feasible execution plan of tasks. The objective is to choose a sequence of interview questions

Otto et al.: Working paper
4

to the experts, each using up some of the time budget T , in such a way that a poset Ē is built

with F (·|Ē) as small as it can be within budget T and E∗ ⊆ Ē.

The initial poset E0 may just contain the currently deployed execution plan of tasks, such as the

start-of-production task sequence in assembly or the default project plan in construction. This data

may be further refined with data mining techniques based on the computer-aided design (CAD-)

data (Qu and Xu 2013, Zha et al. 1998) or the bills of material (Niu et al. 2003) in assembly, user

demonstrations in robotics (Billard et al. 2008, Pardowitz et al. 2005) or on the data from similar

projects (Kashkoush and ElMaraghy 2014).

The contribution of this paper is as follows:

• To the best of our knowledge, we are the first within literature to formulate and analyze the

problem of data validation by experts as an optimization problem. We formulate the DCVP for

the data on precedence relations between tasks.

• Since the DCVP depends on the specific baseline planning problem at hand, we state a

universally-valid problem counterpart for the DCVP – DCVP-gen. As a consequence, the pro-

posed interview policies and the results of our analysis can be directly applied to a wide range of

applications. We state the DCVP as a dynamic program and prove that it is correct.

• We analyze the computational complexity of the DCVP-gen and identify a trivial relevant-

for-practice subproblem. This is an interesting result, since stochastic multi-stage optimization

problems are generally hard to solve.

• We formally analyze the properties of the non-trivial uncertainty set of the DCVP-gen, which

the decision maker actively and dynamically influences by selecting a specific interview question.

• We propose a least squares temporal difference algorithm (LSTD) to solve the DCVP-gen.

• We provide rule-of-thumb approximation formulas to estimate expected benefits of partial

data validation in case some characteristics of the true (target) poset are known. Computational

tests confirm that the proposed approximations are tight, and thus, informative.

• In extensive computational experiments, we illustrate the benefits of partial data validation

and the advantage of the LSTD interview policy.

• We also examine the validity of our ideas in a case study, featuring a portion of the final

assembly of a leading automobile manufacturer. We show that partial validation guided by the

LSTD algorithm results in a significant improvement in the business result.

The paper is structured as follows: Section 2 reviews the relevant literature. Section 3 defines

the DCVP formally, discusses its assumptions, proposes a dynamic program, and examines its

analytical properties. The formulated dynamic program is solved with an approximate dynamic

programming algorithm in Section 4. Section 5 reports on extensive computational experiments,

including a real-world case study. We conclude with an outlook in Section 6.

Otto et al.: Working paper
5

2. Literature review

The problem considered in this paper can be interpreted as a multistage adjustable robust opti-

mization problem, in which the uncertainty set depends on the previously taken decisions (posed

queries to the expert) (see Ben-Tal et al. (2009) and Yanıkoğlu et al. (2019) for an overview). It is an

adjustable problem, because the information is incomplete and is revealed dynamically throughout

the course of the interview, the latter decisions can adjust to the information revealed so far. It is

a robust optimization problem, because after the interview we seek a best possible solution under

the worst possible circumstances, in other words, we seek a solution with guaranteed feasibility.

To the best of our knowledge, we are the first to formulate an adjustable robust optimization

problem of this type. Classically, the uncertainty set is considered as given or is estimated in a

simplistic way. Recent works from the fields of operations research and engineering have devel-

oped methods for deriving the uncertainty set from a pool of available historical data (see, e.g.,

Bertsimas et al. (2017), Han et al. (2021)). A major challenge in this stream is the adjustment

of the conservatism and computational complexities of the resulting optimization problem. We by

contrast, rely on costly data collection instead of a pool of available data.

Our work is also related to the vast literature on information acquisition and learning (see,

e.g., Powell and Ryzhov (2012) for an overview), which contrasts passive learning, or learning

by observation, and active learning, in which decisions influence the outcome of the learning.

The focus of this literature is on the trade-off between exploration and exploitation, i.e. whether

to optimize on the available data (exploitation) or acquire costly additional information at an

extra cost (exploration). In this context, we seek an active learning strategy, but do not face the

exploration/exploitation trade-off in the classical sense as we only incur a reward at the end of the

horizon, that is, after the interview.

Furthermore, we can interpret pairs of tasks with a precedence relation (i, j) ∈E as a directed

edge and depict E and V as a directed acyclic graph G= (V,E). Then the DCVP can be inter-

preted as learning a network from data, which is relevant for such applications as software testing,

biology, and disaster relief. In biology, the data collection problem aims to discover relationships

between genes (nodes), which are edges that visualize protein-mediated regulatory influences such

as promotion or inhibition of gene expression. In contrast to the DCVP, the edges of the network

are derived with a certain probability by statistical analysis based on the (stochastic) output of a

limited number of treatments, each activating or inhibiting a bunch of genes (De Jong 2002, Lee

et al. 2009, Markowetz and Spang 2007). In software testing, nodes on the graph are the executed

portions of the code and the execution sequence of the code corresponds with the directed edges.

The aim is to reduce the expert’s time needed to localize a fault in the code. In contrast to the

DCVP, the edges in this network are given and the aim is to learn the status of the nodes (faulty

Otto et al.: Working paper
6

or correct) by examining suspicious portions of the code (see Wong et al. 2016, for an overview). In

disaster relief, the nodes are clusters of households or communities while the edges are the streets.

After a disaster, the streets may be blocked and the needs of the households are unknown. The aim

of the need assessment in disaster relief is to clarify these unknown parameters (Hlady et al. 1994,

Huang et al. 2013, e.g.), see Kovacs and Moshtari (2019) for an overview. The arising problems

differ very much from the DCVP. For instance, the status of the blocked edges can only be revealed

if some vehicle approaches them, making routing aspects a central component.

If we turn to the literature on precedence relations, the DCVP resembles the so-called assembly

sequence problem (ASP), the problem of finding all or a subset of feasible sequences given the

interactive input of experts or a data set of mathematical formulas implicitly describing precedence

relations and further constraints (Wang et al. 2009). The motivation for the ASP comes from the

design stage of a product. It aims to either assist decision makers in finding an initial feasible

assembly sequence for the start of production, or investigates the impact of alternative design deci-

sions as part of DFX approaches (such as design for manufacturing or assembly). Correspondingly,

much of the literature focuses on documenting and structuring the process of interaction with

experts, such as role assignment, data structures, semantic labeling of data, documentation of the

data for further re-use, and visualizations (Demoly et al. 2011, Kardosh et al. 2020, Lin and Chang

1993, Sanders et al. 2009, Su 2009). In recent years especially, a number of papers on the ASP

have concentrated on the automated extraction of feasible sequences from the design information

on part connections (e.g., from CAD), by applying formal engineering analysis such as motion

analysis of parts, or stability analysis of the assembled intermediate products (Deepak et al. 2018,

Kashkoush and ElMaraghy 2014, Vigano and Gómez 2013, Wan et al. 2017). However, a number

of precedence relations in assembly cannot be derived from the CAD-information, especially if soft

components such as clips and gasket rings are involved, or human factors have to be considered,

such as accessibility and visibility of the area of work (Antani et al. 2014, Arun and Rao 2010,

Vigano and Gómez 2013). Therefore, the resulting data has to be validated by experts.

The articles on the ASP that feature interactions with experts focus on guaranteeing complete-

ness of the collected information and do not usually impose any constraints on the available expert

time or cost, which is in contrast to the research question of this article (Bourjault 1987, de Fazio

and Whitney 1987, Homem de Mello and Sanderson 1991, Lambert 2006, Wang and Liu 2010).

Bozhko (2020), Lagriffoul et al. (2012), Rodŕıgez et al. (2019, 2021), and Srivastava et al. (2014)

come the closest to the problem statement of this article. Bozhko (2020) aims to minimize the

number of time-consuming geometric tests that reveal whether certain assembly states, depicted

as nodes in the so-called Hasse diagram, are feasible. The result of a specific geometric test can

be extended to similar assembly states. The paper models the results of a geometric test as an

Otto et al.: Working paper
7

exogenous random variable (‘nature’) and suggests that different structures of the underlying graph

(Hasse diagram) favor different selections and sequences of geometric tests. Bozhko (2020) proposes

no formal analysis or optimization approach for the dynamic selection of tests, rather he examines

the performance of several simple decision rules in computational experiments on graphs with dif-

ferent structures. Furthermore, Lagriffoul et al. (2012), Rodŕıgez et al. (2019, 2021) and Srivastava

et al. (2014) propose ways to deduce additional information from each expert answer in the context

of robotic assembly. The expert in this case is an extensive simulation environment, which evalu-

ates candidate assembly sequences. If the current candidate assembly sequence is infeasible, then

either a human expert or some algorithm tries to specify a ‘no-goods’ constraint, which possibly

surmises further infeasible sequences. The general approach resembles constraint propagation, but

the derived insights are application-specific and rely, for instance, on the mechanics of motion and

on reachability analysis.

To sum up, to the best of our knowledge, in contrast to the DCVP, the literature on the ASP

does not consider expert time as a limited resource. Most of the literature focuses on the automated

and (in practice) unreliable extraction of information from the available sources, such as CAD

data. Unlike the DCVP, the available studies that include expert interviews do not anticipate the

potential value of the experts’ answers on the final optimization (i.e., on the business outcome).

The current work builds upon the research of Klindworth et al. (2012) and Otto and Otto (2014).

Klindworth et al. (2012) introduced the notions of the maximum and the minimum graph, which

are akin to the notions of the maximum and the minimum posets described below. As part of their

study, Otto and Otto (2014) formulated initial ideas on how to use interviews in the construction

of precedence graphs in assembly.

In summary, this paper is, to the best of our knowledge, the first in literature to examine data

collection and validation by experts under limited time budget as an optimization problem.

3. The data collection and validation problem

We start with formal statements of the DCVP and of its general, application-independent counter-

part DCVP-gen in Sections 3.1 and 3.2, respectively. Section 3.3 examines the implied assumptions.

We focus on the DCVP-gen in all our further discussions and state it as a dynamic program in

Section 3.4. Section 3.5 concludes with some analytical properties of the formulated problem.

3.1. Problem statement for the DCVP

We start with defining the notions of the transitive closure t+(E) and the transitive reduction

t−(E) of a poset E, which will be useful in our further discussions.

Definition 1. Transitive closure. The transitive closure t+(E) of a poset E is recursively

defined as t+(E) = {(i, j)∈ V ×V | (i, j)∈E ∨∃k ∈ V : (i, k)∈ t+(E)∧ (k, j)∈ t+(E)}.

Otto et al.: Working paper
8

If the precedence relations (i, k)∈E and (k, j)∈E exist, this implies there is a transitive or indirect

precedence relation between the tasks i and j. The transitive closure t+(E)⊆ V ×V is the smallest

transitive superset of E. It contains E and all indirect precedence relations induced by E.

Definition 2. Transitive reduction. The transitive reduction t−(E) of a poset E is defined as

t−(E) = argmin
E′ | t+(E′)=t+(E)

|E′|, i.e. it is the smallest poset sufficient for the derivation of the transitive

closure of E.

The complexity of computing t+(E) and t−(E) is polynomial in |E|. Moreover, the transitive

reduction and the transitive closure are unique (Aho et al. 1972).

Now, we define DCVP formally as follows: Let V = {1, . . . , n} denote a set of tasks with an

associated transitive and acyclic target poset E∗ = {(i, j)∈ V ×V | i is a predecessor of j}.

Transitive means that E∗ = t+(E∗). Acyclic implies that if E∗ is visualized as a graph G =

(V,E∗), in which tasks form nodes and precedence relations are depicted as edges, then this graph

is topologically sortable.

We seek to minimize an objective function F (·|E∗), which has the following obvious properties:

• The action space is decreasing in E∗, because precedence relations E∗ limit feasible execution

sequences of the tasks, formally:

E′ ⊆E′′ =⇒ F (·|E′)≤ F (·|E′′) (1)

• The removal of certain precedence relations does not improve F (·|E). For example, if (i, j) /∈E,

but there is k ∈ V such that (i, k)∈E and (k, j)∈E, we cannot plan as if i and j were independent:

We do not know whether such independence is due to (i, k) being independent, or (k, j) being

independent, or both (see Figure 2). In other words:

E′ ⊆E′′ with t+(E′) = t+(E′′) =⇒ F (·|E′) = F (·|E′′) (2)

The challenge now is that the target poset E∗ is unknown. However, we have bounds E and

Ē such that E ⊆E∗ ⊆ Ē. We call Ē the maximum poset and E the minimum poset, and assume

the initial bound Ē0 to be transitive and acyclic. We are conservative in the sense that given this

knowledge, we must resort to optimizing F (·|Ē). Moreover, we dispose of an oracle (the expert).

The oracle accepts only simple and error-resistant questions. More precisely, we can ask the oracle

about each pair (i, j) ∈ V × V , which is related to a direct precedence relation in the current

maximum poset Ē, i.e. (i, j) ∈ t−(Ē) (see the discussion in Section 3.3). With probability pij, the

oracle’s answer is (i, j) /∈E∗, otherwise we know (i, j)∈E∗. The oracle’s answers are used to update

the sets E and Ē. Each question is associated with a cost of τij and we have a total (time) budget

of T0.

Otto et al.: Working paper
9

Figure 2 The Number of Sequences and the Maximum Precedence Relations Set Ē.

𝑖

𝑘

𝑗

Minimum precedence
relations set

Maximum precedence
relations set

Feasible sequences

Ex
am

p
le

 b
Ex

am
p

le
 a

𝑖

𝑘

𝑗
𝑖 → 𝑘 → 𝑗

𝑖

𝑘

𝑗 𝑖

𝑘

𝑗
𝑖 → 𝑘 → 𝑗

Implemented changes:
• Removed red underlining of

(editing)
• Fonts

• Super!

Note. Knowing that i and j are independent does not provide additional flexibility, since we do not know whether such
independence is due to (i, k) being independent, or (k, j) being independent, or both. As a consequence, the number of sequences
known to be feasible does not increase.

This results in the optimization problem of efficiently using the oracle. More precisely, we are

seeking a dynamic policy π that, at each point in time, and depending on our current state of

knowledge (the posets E and Ē), and on the remaining time budget, prescribes the next question

to ask in order to obtain the optimal expected objective value after depleting the time budget:

min
π

Eπ[F (·|Ēπ)] (3)

where the expectation is with regards to Ēπ, which denotes the tightest maximum poset after

having interviewed the oracle within the time budget of T0 following the policy.

3.2. Generalized problem statement: DCVP-gen

The functional form of F (·|E) depends on the studied application and may contain additional

parameters and imply further constraints. Consider the makespan minimization in the project

scheduling given resource endowments and resource consumption rates; or the minimization of the

number of stations given the cycle time and the duration of tasks in the assembly line balancing.

Therefore, it is of interest to study a general, application-independent variant of the DCVP.

Since the oracle only accepts questions to direct precedence relations in the current maximum

posit Ē, any positive answer of an oracle in the DCVP leads to a removed relation and, thus, to

an improvement in terms of Properties 1 and 2. Therefore, in the DCVP-gen, we simply maximize

the expected number of the positive answers of the oracle within the time budget T0:

argmin
π

Eπ[|Ēπ|] = argmax
π

Eπ
[
|Ē0| − |Ēπ|

]
(4)

Recall that Ē0 = tc(Ē0) according to the problem statement and Ēπ = tc(Ēπ) according to Propo-

sition 2 (Section 3.5). As the set Ē0 denotes the possible precedence relations known initially, the

Otto et al.: Working paper
10

number of effectively removed (cf. Property 2) unnecessary precedence relations is |Ē0|− |Ēπ|. Fig-

ure 3 provides a small instance of the DCVP-gen for illustration, in which the optimal policy is

expected to remove about 10% more precedence relations than intuitive alternative policies.

Observe that Function 4 is equivalent to the minimization of the so-called order strength (OS).

Order strength OS(E) ∈ [0,1] of a poset E is the share of task pairs with a precedence relation

in the total number of task pairs: OS(E) = |tc(E)|
n·(n−1)

2

, where n = |V | is the number of tasks. The

order strength is known as one of the best-known low-polynomial approximations for the number

of feasible task sequences, which are feasible with respect to poset E (?) (the computation of

this number is #-P (?)). Moreover, it is a widely recognized indicator to characterize the solution

space and the hardness of the problem instances in the project scheduling and the assembly line

balancing literature (?).

In our case study on line balancing for the final assembly of automobiles in Section 5.5, we will

numerically examine the relationship between the true F (·|Ēπ) and the surrogate (|Ē0| − |Ēπ|)

objective functions. We will show that the maximization of the surrogate objective translates into

a significant improvement of the final task execution plan as measured by the actual objective

function F (·|Ēπ).

Figure 3 An Instance of the DCVP-gen and Three Alternative Policies.

A

B

C

D E

Minimum precedence
relations set 𝑬𝟎

Maximum precedence

relations set 𝑬𝟎

Forecast
(probabilities 𝒑𝒊𝒋)

A

B

C

D E

A

B

C

D E

0.75

0.5 0.5

0.6

Naive (random): 1.06
Myopic (largest 𝑝𝑖𝑗 first): 1.05

Optimal: 1.15

Expected number of uncertain
precedence relations removed

with budget 𝑻𝟎 = 𝟐 queries

A

B

C

D E

Minimum precedence
relations set 𝑬𝟎

Maximum precedence

relations set 𝑬𝟎

Forecast
(probabilities 𝒑𝒊𝒋)

A

B

C

D E

A

B

C

D E

0.75

0.5 0.5

0.6

Naive (random): 1.089
Myopic (largest 𝑝𝑖𝑗 first): 1.100

Optimal: 1.175

Expected number of uncertain
precedence relations removed

with budget 𝑻𝟎 = 𝟐 queries

Note. The instance has five tasks V = {A,B,C,D,E} with four precedence relations in Ē0 and empty E0. Arc labels denote
probabilities pij that the oracle’s answer is (i, j) /∈E∗. Costs are constant τij = 1 and the total time budget T0 = 2 allows to state
two queries. Please note that stating a query on (A,C) is only possible after either (A,B) or (B,C) are already known to be
independent. A naive policy that asks randomly deletes 1.089 precedence relations in expectation. A myopic policy prioritizing
higher probabilities deletes slightly more precedence relations (1.100). In the optimal interview policy, we first ask about (A,B)
(or, equivalently, (B,C)). If this is deleted, we ask about (A,C), else we ask about (D,E). The optimal interview deletes 7 %
more (1.175) precedence relations than the myopic policy. Figures 12 - 14 in the appendix provide details on these policies.

3.3. Discussion of assumptions

In this section, discuss the assumptions of the DCVP-(gen).

Assumption 1. An initial maximum precedence relations set Ē0 and an initial minimum prece-

dence relations set E0 are known. The former is transitive and acyclic.

Otto et al.: Working paper
11

The consequence of acyclicality for Ē0 is that the direction of a possible relation – whether i

is a possible predecessor of j or j is a possible predecessor of i – is known for each pair of tasks.

The consequence of transitivity is that all known independencies can be exploited as they lead to

more feasible sequences – the case of two tasks being independent but required to be executed in a

certain order (see Figure 2 for an example) cannot occur. Transitivity and acyclicality are usually

the case in practice, for example, because at least one feasible solution of F (·|E∗) is known (cf.

Proposition 1 in Section 3.5).

Acyclicality of Ē0 obviously implies the same for E0. Cyclicality of E0 would imply that no fea-

sible sequence exists. We do not require transitivity for E0 and compute tc(E0) whenever required.

The trivial minimum precedence relations set E0 = ∅ is always known.

Assumption 2. Precedence relations in the true set E∗ are transitive and acyclic.

This assumption is straightforward (Baybars 1986, Kolisch et al. 1995, Pinnoi and Wilhelm 1998).

Assumption 3. A query to the oracle addresses exactly one precedence relation.

Possible formulations of the interview questions can oscillate between complicated questions with

extended answers like ”What is the list of all precedence relations?” and simple questions with less

informative answers like ”Is i a predecessor of j?”. We assume the latter type of questions, because

questions that are simple and easy to understand greatly reduce the risk of incorrect answers

and the undesirable prospect of oversights, which are especially pronounced in the event of large

projects/products. This assumption is in line with Otto and Otto (2014).

Assumption 4. The time τij needed to reveal the randomness of (i, j) is known and determin-

istic.

Usually, the number of experts required to answer a query serves as a good approximation of the

required time τij

Assumption 5. The probabilities pij for the oracle’s answers are known.

As discussed in Section 2, a plenitude of methods for estimating the true precedence relations

set has been suggested in the literature. These include experience with similar products/projects,

user demonstrations, and CAD data. Although these methods are susceptible to omissions, they

provide indications of a likely answer from the oracle and can be used to quantify probabilities pij.

Observe that these are ‘subjective’ probabilities, meaning that they are conditional on different

and possibly not well-defined populations (such as sets of similar task pairs with and without

a precedence relation in other projects of different sizes and functions) and generally cannot be

updated based on the oracle’s answers.

Otto et al.: Working paper
12

Assumption 6. We can only ask the oracle about precedence relations (i, j)∈ tr(Ē). The oracle’s

answers are correct.

Motivated by our discussions with practitioners, we restrict the set of valid questions to tr(Ē) to

eliminate possible sources of error. Indeed, to answer a question to some (i, j), for which one or more

indirect precedence relations i→ k→ j have to be cleared, is obviously difficult and susceptible to

errors.

3.4. Dynamic program for the DCVP-gen

In this section, we model the DCVP-gen as a dynamic program (DP) where each stage corresponds

to one query posed to the oracle. We do not limit the number of stages upfront. Nevertheless,

the problem is finite because at some point we cannot ask further questions since either the time

budget has been depleted, or all precedence relations have been clarified. In the following, we define

the state variable, the action space, the contribution function, and the resulting Bellman equation.

The objective function in the formulated DP is to maximize the expected number of effectively

removed unnecessary precedence relations (cf. Expression (4) in Section 3.1).

The state variable S contains everything the interviewer’s decision depends on. We limit ourselves

to the consideration of state variables that adhere to Condition (6) (later, we will show that this

condition is satisfied by the initial state according to the above assumptions as well as by all

subsequent states):

S = (Ē,E,T)∈ S with (5)

S = {(Ē,E,T)∈ V 4 ×R | E0 ⊆E ⊆ Ē ⊆ Ē0, Ē is acyclic and transitive,0≤ T ≤ T0} (6)

The interviewer’s decisions depend on the currently known database. More precisely, the decisions

depend on the set of possible precedence relations Ē and the set of precedence relations known for

sure tc(E), which are those in E and those derived from them. Furthermore, the decision depends on

the remaining duration of the interview T . The interview starts with initial state S0 = (Ē0,E0, T0).

Recall that T0 is the maximum duration of the interview.

For each state, we formally define the set of feasible interview questions as follows:

X(S) =
{
(i, j)∈ V ×V |(i, j)∈ tr(Ē) \ tc(E), τij ≤ T

}
(7)

Based on Assumption 6, the interviewer asks only questions concerning elements in the transitive

reduction of the maximum precedence relations set Ē. As the precedence relations in the transitive

closure tc(E) are known for sure, no questions are asked regarding these. Finally, the interviewer

asks only questions that can be answered during the remaining time budget of the interview.

Otto et al.: Working paper
13

If X(S) = ∅, no question can be asked and we call state S absorbing. This occurs if either the time

is elapsed or if all elements in the transitive reduction of the set of possible precedence relations

tr(Ē) are known for sure. The latter is equivalent to tc(E) =E∗ = Ē.

The interviewer’s stage-wise contribution is the number of unnecessary precedence relations

removed from the maximum precedence relations set after the oracle’s answer on the task pair

(i, j) in state S, where the Bernoulli random variable Ωij with success probability pij denotes the

oracle’s answer (realization ωij = 1 signals that there is no precedence relation):

C(S, (i, j),Ωij) =

{
|tc(Ē)| − |tc(Ē \ (i, j))| if Ωij = 1

0 if Ωij = 0.
(8)

In other words, the interviewer’s contribution equals the number of additionally confirmed inde-

pendencies derived from the oracle’s answer. Corollary 2 below further quantifies the value of the

contribution function in case an unnecessary precedence relation is found.

Recall that Expression 4 for the objective function requires that Ē is the tightest transitive

maximum precedence relations set given the information available. Collorary 1 in Subsection 3.5

confirms that Ē always satisfies this requirement.

Finally, we formulate a recursive Bellman equation:

B(S) =

{
max

(i,j)∈X(S)
pij · (C(S, (i, j),1)+B(S̄ij))+ (1− pij) ·B(Sij) ∀S ∈ S|X(S) ̸= ∅

0 else
(9)

with S̄ij = (Ē \ (i, j),E,T − τij) and Sij = (Ē,E ∪ (i, j), T − τij). With probability pij, the oracle

reveals the independence of i and j; the contribution equals C(S, (i, j),1) (see Expression (8)), the

interviewer updates the maximum precedence relations set Ē and transits to state S̄ij. Otherwise,

with probability (1− pij), the contribution equals 0 and the interviewer transits to state Sij by

updating the minimum precedence relations set E.

B(S) is the value of state S. More precisely, it denotes the expected amount of unnecessary prece-

dence relations that will be discovered during the rest of the interview, provided the interviewer

follows an optimal policy. The value of an absorbing state equals zero. As the amount of prece-

dence relations is bounded, the Bellman equation converges without discounting. The resulting

state graph is illustrated in Figure 4.

The interviewer’s decision problem is to select a query in each state (i.e. find an interview

policy) so as to maximize the total expected contribution incurred when starting from initial state

S0 = (Ē0,E0, T0).

Otto et al.: Working paper
14

Figure 4 Illustration of the State Graph.

ask(𝑖, 𝑗)

+𝐶(𝑆, 𝑖, 𝑗 , 1)
(𝑖, 𝑗) not
necessary

+0
(𝑖, 𝑗) necessary

.

.

.

 .

 .

 .

.

.

.

 .

 .

 .

.

.

.

 .

 .

 .

𝐵(ത𝐸, 𝐸, 𝑇)

𝐵(ത𝐸 ∖ 𝑖, 𝑗 , 𝐸, 𝑇 − 𝜏𝑖𝑗)

𝐵(ത𝐸, 𝐸 ∪ (𝑖, 𝑗), 𝑇 − 𝜏𝑖𝑗)

Decision
(about query)

Outcome
(answer)

Decision
(about query)

Outcome
(answer)

Note. Squares denote decision nodes, circles denote chance nodes. At decision nodes, the query with maximum expected value
is selected. At chance nodes, the state’s value is the expectation over the two possible events (the oracle answers yes or no, and,
accordingly, we know that the corresponding precedence relation does (not) exist for sure).

3.5. Analytical results

In this section, we prove a number of useful analytical properties of the modelled DCVP-gen,

including the correctness of the formulated dynamic program in Proposition 4. Afterwards, we

reflect on the computational complexity of the DCVP-gen in Propositions 5 and 6. In particular,

we show a realistic special case of the DCVP-gen, which is trivial to solve. This is a very interesting

result in view of the complexity of general stochastic multi-stage optimization problems (e.g. Dyer

and Stougie (2006), Hanasusanto et al. (2016).)

We start with formulating a condition that is needed for most of the analytical results.

Condition 1 For the maximum precedence relations set holds Ē = tc(Ē).

If Condition 1 applies, then the situation as illustrated in Figure 2 is impossible: although

independency (i, j) is confirmed, it is still unknown whether this independency is attributed to

the missing edge between (i, k) or to the missing edge between (k, j); therefore, pair (i, j) is not

removed from tc(Ē). In practice, this means that until the status of the pairs (i, k) and (k, j) can

be cleared, we have to ignore the available information and treat (i, j) as a precedence relation in

order to guarantee feasible solutions.

The following proposition shows that Condition 1 holds in practice, where the initial maximum

precedence relations set often represents one feasible sequence of tasks or is derived from a number

Otto et al.: Working paper
15

of feasible sequences of tasks (Klindworth et al. 2012). An example of the data for such initial

sequence is the start-of-production plan for the execution of tasks.

Proposition 1. If the set of possible precedence relations Ē0 is derived based on several (L≥ 1)

feasible sequences, then Ē0 satisfies Condition 1.

Proof. Let there be L feasible sequences of the tasks. Each sequence l ∈ {1, · · · ,L} induces a

set of possible precedence relations Ēl for which obviously holds Ēl = tc(Ēl).

For the set of possible precedence relations Ē0 holds

Ē0 :=
L⋂

l=1

Ēl (10)

Now, consider two arbitrary but fixed precedence relations (i, j), (j, k) ∈ Ē0, then (i, j), (j, k) ∈

Ēl ∀l. Furthermore, as Ēl = tc(Ēl), it follows that (i, k)∈ Ēl ∀l. Therefore (i, k)∈ Ē0. We conclude

that Ē0 = tc(Ē0). □

The following proposition shows that Condition 1 holds for all databases during the interview.

Proposition 2. Provided Ē0 = tc(Ē0), Ē = tc(Ē) holds for all states S of the dynamic program

formulated in Section 3.4, that can be reached from the initial state S0 (i.e. for which there is a

path from initial state S0 to S in the defined state graph).

Proof. The proof is by induction, and Ē0 = tc(Ē0) forms the basis.

Let Ē=tc(Ē) be the maximum precedence relations set of some state S and let action (i, j) ∈

X(S) be selected. Furthermore, let Ē′ denote the maximum precedence relations set of the following

state.

• If Ωij = 0, then (i, j)∈E∗ and the maximum precedence relations set in the next state remains

unchanged: Ē′ = Ē = tc(Ē) = tc(Ē′).

• If Ωij = 1, then (i, j) /∈E∗ and the maximum precedence relations set is now Ē′ = Ē \ (i, j).

Now assume for a proof by contradiction that there exist i′, j′, k ∈ V such that (i′, k), (k, j′) ∈ Ē′

and (i′, j′) /∈ Ē′. As Ē = Ē′ ∪ (i, j) and Ē = tc(Ē) must follow (i′, j′) = (i, j). Since Ē′ ⊂ Ē follows

(i′, k) = (i, k), (k, j′) = (k, j)∈ Ē and therefore (i, j) /∈ tr(Ē) which contradicts the feasible set X(S).

The same reasoning applies for more than one intermediate node k. □

Given the limited time of the oracle, it is important to see, whether the information that we

request from her can be derived without using the oracle’s precious time. For this purpose, we

introduce the notion of the uncertainty set.

Definition 3. Uncertainty set. Consider the state graph as defined in Section 3.4 for

a DCVP-gen instance with the sets Ē0, E0 and time budget T0. Then, the initial state

S0 in the state graph is S0 = (Ē0,E0, T0). Consider also state S = (Ē,E,T) that can

Otto et al.: Working paper
16

be reached in this state graph starting from the initial state S0 via some interview I =(
(i1, j1, ωi1,j1), (i2, j2, ωi2,j2), . . . , (ip, jp, ωip,jp), . . . , (iP , jP , ωiP ,jP)

)
consisting of P questions to task

pairs (ip, jp) and the respective responses of the oracle ωip,jp ∈ {0,1}, p∈ {1, . . . , P}.
The Uncertainty set U(S) is the set of task pairs whose status ((i, j)∈E∗ vs. (i, j) /∈E∗) cannot

be derived from the information available, which is:

(i) initial sets Ē0,E0,

(ii) answers of the oracle (ωi1,j1 , ωi2,j2 , . . . , ωip,jp , . . . , ωiP ,jP) and

(iii) the known properties of the target graph (transitive and acyclic).

Proposition 3. Consider a state S = (Ē,E,T) such that there is a path from the initial state

S0 to S in the state graph of the defined dynamic program, then the respective uncertainty set is

U(S) = Ē \ tc(E).

Proof. The proof is in three steps. Together, the first two steps demonstrate that the uncertainty

set is not too small, i.e. does not miss any uncertain relations. The third shows that it is not too

big, i.e. all of its elements are really uncertain.

• First, observe that Ē indeed contains all possible precedence relations, that is, a precedence

relation (i, j) /∈ Ē does not exist for sure. This is obvious from the definition of Ē0 and the updating

rule S̄ij.

• Second, observe that tc(E) only contains possible precedence relations that exist for sure.

Again, this is obvious from the definition of E0, the updating rule Sij and the transitivity of E∗.

• Third, we need to show that all (i, j) ∈ Ē \ tc(E) are really uncertain. Obviously, they have

not yet been asked nor initially known. However, it might be possible to derive their status from

the properties of the transitivity and acyclicality of the target precedence relations set E∗. To show

that the status of some task pair (i, j) ∈ Ē \ tc(E) is uncertain, we will construct two alternative

transitive and acyclic target sets E∗
1 and E∗

2 with (i, j) ∈ E∗
1 and (i, j) /∈ E∗

2 . Obviously, if the

construction of two such alternative target graphs is possible, we cannot infer about the status of

(i, j) for sure.

Consider any (i, j)∈ Ē \ tc(E) and set E∗
1 := Ē and E∗

2 := tc(E). Both E∗
1 and E∗

2 are transitive

and acyclic. Indeed, since Ē0 is acyclic, E∗
1 and E∗

2 are acyclic as subsets of Ē0. E
∗
2 is obviously

transitive. E∗
1 is transitive by Proposition 2. □

Now, we are ready to conclude that given some state S = (Ē,E,T) which can be reached by

some interview from the initial state S0, Ē is the tightest maximum precedence relations set. This

is required by the definitions of the objective functions of the DCVP(-gen) in (3) and (4).

Collorary 1 Assume that a series of queries and answers brought us from the initial state S0 to

state S = (Ē,E,T) in the formulated dynamic program. Then, the set Ē is the tightest possible

Otto et al.: Working paper
17

maximum precedence relations set given Ē0, E0 and the available answers of the oracle. Likewise,

tc(E) is the largest minimum precedence relations set.

Proof. The proof follows from the proof of Proposition 3. Since by definition, Ē contains all

true precedence relations of E∗, and Ē = tc(E)∪ U(S), tc(E) is the largest minimum precedence

relations set because it includes all possible precedence relations whose status is not uncertain.

Now, again because Ē = tc(E)∪U(S), set Ē is the tightest possible maximum precedence relation

set. □

Collorary 2 In the constructed DP, the contribution is

C(S, (i, j),Ωij) =

{
1 if Ωij = 1

0 if Ωij = 0.
∀S, (i, j)∈X(S).

Proof. According to the definition, the contribution is the number of possible precedence rela-

tions removed after the oracle’s answer. Given Collorary 1, the contribution equals the change in

the cardinality of Ē. Recall that by Proposition 2, tc(Ē) = Ē and tc(Ē \ (i, j)) = Ē \ (i, j) for a

valid query (i, j) in the formualted dynamic program. According to the definition of the transition

between the states, if Ωij = 1, then C(S, (i, j),1) = |tc(Ē)| − |tc(Ē \ (i, j))|= |Ē| − |Ē \ (i, j)|= 1. If

Ωij = 0, then C(S, (i, j),0) = |tc(Ē)| − |tc(Ē)|= 0. □

Based on Collorary 2, the evaluation of the contribution function is trivial. This reduces the

computational burden of the DCVP-gen. Furthermore, this shows that the immediate value of a

query depends only on the probability pij of the respective task pair. The long-term consequences

of the query, however, also depend on the structure of Ē. Imagine Ē as the set of arcs in a graph.

With targeted queries, we may ‘reach’ the areas of this graph with low τij (easy-to-answer queries)

and large pij (high probabilities of a beneficial answer), that is, AC in Figure 3. If both sets of

parameters are constant, the DCVP-gen turns trivial as we show in Proposition 5 below.

Proposition 4. The DP stated in Section 3.4 indeed optimizes Equation (4).

Proof. For each policy π and each state S, let Xπ(S) denote the decision prescribed by policy

π in state S.

In the DCVP-gen as stated in Section 3.1, the queries are only limited to the transitive reduction

of the current maximum precedence relations set tr(Ē), but in the dynamic program of Section 3.4

we additionally exclude queries to tc(E). Observe that the excluded actions are dominated in the

sense that there exists at least one optimal policy for the DCVP-gen in which no such queries are

asked.

Otto et al.: Working paper
18

We denote the random variable of the state which is based on the policy π after q queries as

Sπ(q) with maximum precedence relations set Ēπ(q). If X
π(Sπ(q)) = ∅, no query can be asked and

the state remains unchanged: Sπ(q+1) = Sπ(q). Finally, for Equation (4) holds

max
π

Eπ
[
|Ē0| − |Ēπ|

]
=max

π
Eπ

[
∞∑
q=0

|Ēπ(q)| − |Ēπ(q+1)|
]

=max
π

Eπ

[
∞∑
q=0

C(Sπ(q),X
π(Sπ(q)),ΩXπ(Sπ(q))

)

]
=B(S0) (11)

With Ēπ(0) = Ē0 and lim
q→∞

Ēπ(q) = Ēπ. For a proof of the last equality see Powell (2011). □

The following lemma provides insights into the action set, which we will use, for instance, in

stating the computational complexity of a special case of the DCVP-gen in Proposition 5. More

precisely, it states that we can ask feasible interview questions in an arbitrary order.

Lemma 1. Given state S = (Ē,E,T) with |X(S)| ≥ 2 for e, e′ ∈X(S), e ̸= e′, if T ≥ τe + τe′, the

following statements are true:

a) e′ ∈X(S̄e)

b) e′ ∈X(Se)

Proof. Recall that S̄e and Se are the states to which we transit from S after having stated a

query to task pair e if the answer of the oracle is ωe = 1 and ωe = 0, respectively.

From e′ ∈X(S) it follows that e′ ∈ tr(Ē) and e′ /∈ tc(E). Let denote e′ = (i′, j′).

a): Let e′ /∈ X(S̄e) =
{
(i, j)∈ V ×V | (i, j)∈ tr(Ē \ {e}) \ tc(E), τij ≤ T − τe

}
. Since e′ ∈ X(S)

and T ≥ τe + τe′ , then e′ /∈ tc(E), which implies that e′ /∈ tr(Ē \ {e}). In other words, ∃k ∈ V :

{(i′, k), (k, j′)} ⊆ Ē \ {e}. However, since e′ ∈ tr(Ē), it holds that {(i′, k), (k, j′)} ⊈ Ē. Proven by

contradiction.

b): Let e′ /∈X(Se) =
{
(i, j)∈ V ×V |(i, j)∈ tr(Ē) \ tc(E ∪{e}), τij ≤ T − τe

}
. Since e′ ∈X(S) and

T ≥ τe+τe′ , it follows that e
′ ∈ tc(E∪{e}). In other words, ∃k ∈ V : (i′, k)∈E∪{e}, (k, j′)∈E∪{e}.

Recall that (E ∪{e}) ⊆ Ē (cf. the definition of the state variables and actions in (6) and (7)),

meaning that (i′, k) ∈ Ē and (k, j′) ∈ Ē, but then e′ = (i′, j′) /∈ tr(Ē) =⇒ e′ /∈ X(S). Proven by

contradiction. □

Proposition 5. For DCVP-gen with constant parameters pij = p and τij = τ , any policy (as

defined by (7)) is optimal.

Proof. Observe that the expected value of the state-action pair (S, e) is Q(S, e) = pe · (1 +

B(S̄e)) + (1 − pe) · B(Se) for all states S | X(S) ̸= ∅ and any task pair e ∈ X(S) (cf. Bellman

equation (9)). For an arbitrary S = (Ē,E,T), we obtain:

Q(S, e) = p(1+B(Ē \ e,E,T − τ))+ (1− p)B(Ē,E ∪ e,T − τ) (12)

Otto et al.: Working paper
19

Below, we will use a proof by induction to show that for any state S | X(S) ̸= ∅, Q(S, e) has the

same value irrespective of the selected query e, that is:

Q(S, e) =Q(S, e′) ∀e, e′ ∈X(S) (13)

Basis: The proposition obviously holds if either of the following conditions is true:

• |X(S)| ≤ 1 or

• T < 2τ .

Induction step: Let the proposition hold for the states with T ≤ (T ′− τ), where (T ′− τ) is some

non-negative number. As we will show below, then it holds for the states with T ≤ T ′.

Consider S = (Ē,E,T ′). The case of |X(S)| ≤ 1 is trivial. Hence, assume that |X(S)| ≥ 2.

Take any e, e′ ∈X(S) and write out Q(S, e) explicitly for two stages:

Q(S, e) =p(1+max
e∗

[
p(1+B(Ē \ e \ e∗,E,T ′ − 2τ))+ (1− p)B(Ē \ e,E ∪ e∗, T ′ − 2τ)

]
+

(1− p)max
e∗

[
p(1+B(Ē \ e∗,E ∪ e,T ′ − 2τ))+ (1− p)B(Ē,E ∪ e∪ e∗, T ′ − 2τ)

]
(14)

From Lemma 1, we know that e′ ∈X(S̄e) and e′ ∈X(Se) . So, by the induction hypothesis, we

can rewrite Expression (14) as follows:

Q(S, e) =p(1+
[
p(1+B(Ē \ e \ e′,E,T ′ − 2τ))+ (1− p)B(Ē \ e,E ∪ e′, T ′ − 2τ)

]
+

(1− p)
[
p(1+B(Ē \ e′,E ∪ e,T ′ − 2τ))+ (1− p)B(Ē,E ∪ e∪ e′, T ′ − 2τ)

]
(15)

By a simple rearrangement, we receive:

Q(S, e) =p(1+
[
p(1+B(Ē \ e′ \ e,E,T ′ − 2τ))+ (1− p)B(Ē \ e′,E ∪ e,T ′ − 2τ)

]
+

(1− p)
[
p(1+B(Ē \ e,E ∪ e′, T ′ − 2τ))+ (1− p)B(Ē,E ∪ e′ ∪ e,T ′ − 2τ)

]
(16)

The second part of Expression (16) resembles a situation, where we would select query e′ in state

S first and state query e afterwards. Since e ∈X(S̄e′) and e ∈X(Se′) by Lemma 1 and given the

induction hypothesis, we can write:

Q(S, e) =p(1+max
e∗

[
p(1+B(Ē \ e′ \ e∗,E,T ′ − 2τ))+ (1− p)B(Ē \ e′,E ∪ e∗, T ′ − 2τ)

]
+

(1− p)max
e∗

[
p(1+B(Ē \ e∗,E ∪ e′, T ′ − 2τ))+ (1− p)B(Ē,E ∪ e′ ∪ e∗, T ′ − 2τ)

]
=

=Q(S, e′) (17)

□

Otto et al.: Working paper
20

According to Proposition 5, we obtain an optimal policy by selecting an arbitrary action in

each state of the formulated dynamic program if the queries regarding precedence relations require

the same time, and are successful with equal probability. Another interpretation is the following:

If the interviewer is unable to quantify the benefits of the queries (the probability to remove a

precedence relation), as well as the consumption of the resource (the time to answer a query) and

therefore assumes these to be constant, the interviewer can not optimize the interview beyond

stating queries to any task pair from tr(Ē)\ tc(E) for the current state S. Therefore, it is necessary

for the interviewer to estimate the parameters of the DCVP(-gen) prior to the interview.

Proposition 6. The DCVP-gen, whose parameters are rational numbers, is NP-hard in the

strong sense.

Proof. Observe that the concept of ‘language’ used in the definition of P- and NP-problem

instances, accepts only a finite string of symbols and cannot work, for instance, with real numbers.

Therefore, we formulate the proof for rational numbers. The knapsack problem with weights and

profits that are rational numbers is NP-hard in the strong sense (Wojtczak 2018). Any such knap-

sack instance can be reduced to the DCVP-gen in polynomial time, as we show below. Hence, the

DCVP-gen is NP-hard in the strong sense as well.

Consider an arbitrary but fixed instance of the knapsack problem with capacity T and K items.

The value of the items k ∈ {1, . . . ,K} is denoted as vk ∈R+
0 and the weight as wk ∈R+

0 ,
∑

k∈V wk >

T . W.l.o.g. the values are scaled such that 0≤ vk ≤ 1. The objective is to select a subset of items

V ⊆ {1, . . . ,K} with the highest total value
∑

k∈V vk such that the capacity of the knapsack is not

violated, i.e.
∑

k∈V wk ≤ T .

Now let there be a DCVP-gen with the set of tasks V := {1, . . . ,K +1} and initial maximum

precedence relations set Ē0 = {(i, j)∈ V ×V | i < j}. Observe that Ē0 is transitive and acyclic.

The set of precedence relations known for sure is E = ∅. The probability pij is given by pij ={
vi , j = i+1

p , else
, where p ∈ (0,1) is an arbitrary number, and the cost τij =

{
wi , j = i+1

T +1 , else
.

Therefore each precedence relation in tr(Ē0) corresponds to one of the K items. The target prece-

dence relations set, which the oracle needs for her answers, equals E∗ := ∅.

Given Proposition 4, without loss of generality, we assume that the DCVP-gen is stated as

the dynamic program from Section 3.4. Observe that a feasible sequence of interview queries I =

((i1, j1), (i2, j2), . . .) that exhausts the time budget in the formulated DCVP-gen requires
∑

(i,j)∈I τij

time and has the expected value of
∑

(i,j)∈I pij. The latter can be found by applying the Bellman

equation (9) to the constructed state graph in a backward induction starting with the corresponding

absorbing state.

Otto et al.: Working paper
21

Any feasible solution V ⊆ {1, . . . ,K} of the knapsack problem which exhausts the knapsack’s

capacity T corresponds to a sequence of interview questions and the respective answers of the oracle

(i.e., to a path from the initial state S0 to some absorbing state) in the formulated DCVP-gen

with the same expected value. Indeed, since all the knapsack items correspond to the task pairs in

tr(Ē0), the respective interview queries can be stated in an arbitrary order according to Lemma 1.

And the other way around, any feasible path from the initial state S0 to some absorbing state

in the state graph of the DCVP-gen (i.e. a feasible sequence of not superfluous interview questions

and answers of the oracle) corresponds to a feasible solution of the knapsack problem that exhausts

the knapsack’s capacity T . The expected value of the path and the objective value of the knapsack

solution are the same. Finally, note that as we only have non-negative values v, if the knapsack has

an optimal solution, then it has an optimal solution that exhausts the knapsack’s capacity. □

4. Approximate dynamic programming

In this section, we state how we solve the DCVP-gen via approximate dynamic programming. For

this we use a least squares temporal difference (LSTD) approach (see, e.g., Powell (2011) for an

introduction into this technique). The aim of LSTD is to fit a value function approximation (VFA)

B̃(S) =
K∑

k=1

θkϕk(S) (18)

with features ϕk and regression parameters θk.

A careful selection of a small number of meaningful, problem-specific features is crucial to a

satisfactory execution of this approach. Observe attractive queries (i, j) with high probability

pij and low time τij are impossible to ask for if (i, j) /∈ tr(Ē), i.e. if (i, j) is also an indirect

precedence relation caused by some other precedence relations and these potential dependencies

must be clarified first. However, as soon as all promising queries are ‘accessible’, the remaining

DCVP-gen instance can be interpreted as a knapsack problem (cf. our analysis in Proposition 6 of

Section 3.5 for intuition). Based on these insights, we selected the following parameters for the VFA

in Expression 18: K = 5 and ϕ1(S) =
∑

(i,j)∈X(S)

pij
τij

, ϕ2(S) =
√
T ·

∑
(i,j)∈X(S)

pij
τij

, ϕ3(S) = T ·
∑

(i,j)∈X(S)

pij
τij

,

ϕ4 = T , ϕ5 =
√
T . The VFA takes into account the remaining duration of the interview T , the

feasible set of questions X(S), and attractiveness indices
pij
τij

. The latter are known to perform

well in knapsack problems. In addition, their inclusion allows for rewarding a larger cardinality of

X(S). We do not add a constant feature ϕk = 1 for two reasons: First, the interviewer’s decisions

(the solutions in Step 10 of the Algorithm 1 stated below) are invariant to a constant shift. Second,

this poses additional technical challenges in the solution algorithm: The matrix A in Step 14

Algorithm 1 would not be invertible for λ = 1 (artificial discount factor explained below). We

Otto et al.: Working paper
22

performed intensive pretests, which explored alternative features, including more complex ones,

as well as experimented with different numbers of features. Our pretests show that the proposed

architecture of the VFA is a simple and robust one among well-performing alternative architectures.

Algorithm 1 below provides a general overview of the LSTD algorithm. Step 1 initializes the

vector of regression parameters θ = (θ1, · · · , θK)T . These regression parameters are updated M

times (Step 4 to Step 17). Step 2 and Step 3 initialize a matrix and a vector of zeros. These are

needed for the sums in Step 11 and Step 14. Step 5 initializes the state as the starting state S0

while Step 6 initializes the counter for the while loop (Step 8 to Step 15). Step 7 evaluates the

K features for the initial state S0. This column vector is needed in the first iteration of the while

loop. The while loop in Step 8 iterates as long as the interviewer has a feasible question. Step

9 increments the loop counter. Step 10 finds the best question to ask based on the current VFA

which depends on the regression parameters θk. Step 11 adds up the vector b for Step 16. Based

on the optimal decision in Step 11 and the probability pi∗,j∗ , Step 12 transits the system to the

new state S. The features are evaluated for the new state in Step 13. The resulting column vector

is used to build up the matrix A in Step 14. After the while loop ends (Step 15), the regression

parameters are updated using A and b.

Some perceptivity as to why the algorithm works: We can restate the Bellman equation (9) in

the vector form for the optimal policy Xπ(·)

B(s) = pXπ(s)C(s,Xπ(s),1)+EXπ(s)[B(s′)], (19)

where B(·) is the vector based value function and s′ the vector of downstream states resulting from

the vector s and the optimal decisions Xπ(s) as well as the stochastic outcome. Rearranging yields

0 = pXπ(s)C(s,Xπ(s),1)+EXπ(s)[B(s′)]−B(s). (20)

Since we cannot enumerate the whole state space in appropriate time, we replace the vectors of

states s and s′ with the much smaller vectors ŝ and ŝ′ which correspond to the visited states in

Algorithm 1. As not all downstream states of the current state are visited, we cannot compute the

expectation in (20). We can only observe a single outcome. This results in:

δ(ŝ) = pXπ(ŝ)C(ŝ,Xπ(ŝ),1)+B(ŝ′)−B(ŝ), (21)

where δ(ŝ) is the error based on replacing the expectation with a single observation. This error is

called the temporal difference (TD) and this should be close to zero. Finally, we replace the value

function B by the VFA B̃ and expand it as in Equation (18):

δ̂(ŝ) = pXπ(ŝ)C(ŝ,Xπ(ŝ),1)+ θT ·ϕl − θT ·ϕl−1 (22)

Otto et al.: Working paper
23

Algorithm 1 LSTD

1: Initialize K dimensional column vector of regression parameters θ := 0K

2: Initialize K ×K matrix A := 0KK

3: Initialize K dimensional column vector b := 0K

4: for m= 1 to M do

5: Initialize S := S0

6: Initialize counter l := 0

7: Φ0 := Φ(S)

8: while X(S) ̸= ∅ do

9: l := l+1

10: (i∗, j∗) := argmax
(i,j)∈X(S)

pij · (C(S, (i, j),1)+ B̃(S̄ij))+ (1− pij) · B̃(Sij)

11: b := b+Φl−1 · pi∗,j∗C(S, (i∗, j∗),1)

12: Stochastic state transition

13: Φl := Φ(S)

14: A :=A+Φl−1 · (Φl−1 −λΦl)T

15: end while

16: θ :=A−1b

17: end for

The temporal difference δ̂(ŝ) is the error based on replacing the value function by the VFA and

the single observation of the downstream state. The aim of LSTD, especially Step 16 of Algorithm

1, is to find regression parameters θ which minimize δ̂(ŝ) in the least squares sense. More precisely,

Step 16 of Algorithm 1 is the solution to the Gaussian normal equations which minimizes (22). For

faster convergence, we use an artificial discount factor λ in this regression.

The purpose of Algorithm 1 is to compute VFAs. The induced policy is

XV FA(S) = argmax
(i,j)∈X(S)

pij · (C(S, (i, j),1)+ B̃(S̄ij))+ (1− pij) · B̃(Sij) (23)

5. Computational experiments

In this section, we perform computational experiments on benchmark data sets and examine a case

study of data collection and validation from the final assembly of automobiles.

We start with the description of the benchmark data sets, of the evaluated policies as well as of

further general aspects of the experimental design in Section 5.1. Afterward, we first explore the

potential of partial data validation based on approximation formulas (Section 5.2). Then, the core of

the computational study starts and numerically quantifies the benefits of interview optimization in

Otto et al.: Working paper
24

Section 5.3. Section 5.4 focuses solution quality and benchmarks the designed approximate dynamic

programming approach. Finally, Section 5.5 illustrates the benefits of a structured (’optimized’)

interview in the case study.

5.1. Benchmark data sets and algorithms evaluated

As discussed in the introduction, data collection on precedence relations is relevant to many areas

of business. This includes product design, assembly and manufacturing, project scheduling, con-

struction, as well as transportation and logistics. We examined these fields within the literature in

search of established benchmark data sets structured around the characteristics of the precedence

relations set, since the precedence relations set is in the focus of the DCVP-gen. As a result, we

selected the benchmark data sets of Otto et al. (2013), which are well-known in the assembly line

literature, and the benchmark data sets of Kolisch and Sprecher (1996) and Kolisch et al. (1999),

which are prominent in the resource-constrained project scheduling literature. We refer to the first

group of data sets as ALPLib, Assembly Line Problem Library, and to the second group of data

sets as PSPLib, Project Scheduling Problem Library. In the main part of our computational exper-

iments, we use the data sets of ALPLib. These consist of instances with 50 tasks (525 instances in

total) and the data sets of PSPLib consisting of instances with 30 tasks (480 instances in total).

Therefore, if not otherwise stated, when we speak about ALPLib, we imply instances with 50 tasks

from these data sets, and when we speak about PSPLib, we imply instances with 30 tasks from

these data sets. The effect of the instance’s size (i.e. the number of tasks) is examined systematically

as part of Section 5.4.

The instances of ALPLib are structured around the order strength OS ∈ [0,1], where 0 implies

that no precedence relation exists and 1 means that all possible precedence relations exist. More

formally, OS is the share of task pairs with a precedence relation in the total number of task pairs:

OS(E) = |tc(E)|
n·(n−1)

2

, where n= |V | is the number of tasks. The ALPLib consists of 225 instances with

order strength 0.2, 225 instances with order strength 0.6, and 75 instances with order strength 0.9.

The 480 instances of PSPLib contain instances with rather low order strength of [0.25,0.65]

with an average of 0.45. Thereby each task has between 1 and 3 immediate successors and 1 and

3 immediate predecessors. To report the results, we form two groups: 305 instances with order

strength < 0.5 and 175 instances with order strength ≥ 0.5.

We treat each instance I in ALPLib and PSPLib as an unknown target precedence relations set

E∗
I and ignore possible additional characteristics of the instances other than precedence relations.

We assume that, initially, we do not know any precedence relations for sure, that is EI,0 := ∅. To
generate the initial maximum precedence relations set ĒI,0 for an instance with n tasks, we use

the transitive closure induced by the sequence < 1,2, . . . , n >, which corresponds to the numbering

of the tasks, and is known to be feasible for all instances.

Otto et al.: Working paper
25

Based on our intensive talks with practitioners, we decided on the following rather conservative

approach in generating parameters τij and pij. We assign high probabilities of pij := 0.9 to the

task pairs in tc(E∗
I) and low probabilities of pij := 0.1 to the remaining task pairs. Next, we swap

parameter values for a certain number (e.g. ξ ·n) of task pairs randomly drawn with replacement

to reflect uncertainty in the baseline data. We call ξ the noise index and set its default value to

0.2. In more detail, the generation process for instance I is given by Algorithm 2:

Algorithm 2 Generation of probabilities pij

1: Set probabilities pij := 0.9 · 1(ij)/∈tc(E∗
I
) +0.1 · 1(ij)∈tc(E∗

I
).

2: Sample (with replacement) ξ ·n task pairs (i, j) and set pij := 1− pij.

We simply set τij := 1, i.e. the interviewer asks up to T0 questions, since no comprehensive data

on the characteristics of the real-world distributions of τij is available to us yet.

The stated data generation approach for τij and pij is conservative since it relates to the current

state of data at companies. We expect that with further progress in digitization, and as a result of

increased scientific support regarding the problem of data validation, companies will improve their

ability to precisely estimate these values. Thus, in the future, values for τij and pij will become more

varied at companies. Observe that, given insights from Proposition 5, more variability in parameters

τij and pij should make the positive effect of interview optimization even more prominent.

In our computational experiments, we use a straightforward interview policy (Naive) as the

baseline and compare it with two structured interview policies (Myopic and LSTD). We call the

latter two policies structured, since the selection of the next interview question is not arbitrary,

but follows some not purely random algorithm.

Naive: Naive chooses the next interview query randomly from the feasible set X(S). In contrast

with the other methods, Naive ignores information on pij and τij beyond a simple check for the

remaining time budget.

Myopic: This policy chooses a query with the highest short-term value without anticipating future

queries. The short-term value coefficient is motivated by the similarity between the DCVP-gen and

the knapsack problem (cf. Proposition 6). Specifically,

XMyopic(S) := argmax
(i,j)∈X(S)

pij
τij

. (24)

LSTD: LSTD is the policy proposed in Section 4. We update the regression parameters M := 50

times with λ := 0.9.

Otto et al.: Working paper
26

In all algorithms, we break ties randomly. For each examined policy, we report the ‘average

number of removed precedence relations’: we compute (|ĒI,0|−|Ēπ
I)| for each instance I and average

this number over the respective instances.

We conducted our experiments on a computer with an AMD Ryzen 5 2400G CPU (4×3.6 Ghz),

16 GB RAM and Windows 10 operating system. The interview policies were programmed with

Matlab R2020a.

5.2. Exploring the potential of partial data validation: Analytical approximation

According to first-hand obtained communication, practitioners do not perceive partial validation of

the data on precedence relations as an investment alternative worthy of pursuit given how expensive

and limited expert time is. In our opinion, managers may underestimate:

• The amount of additional information – indirect precedence relations – that can be derived

from the expert’s answers.

• The effect that the removal of even a small number of unnecessary precedence relations would

have on the optimal solution of the baseline planning problem.

As for the latter, we provide an anchor for the reader and relate the number of removed prece-

dence relations to the number of feasible sequences of tasks – which is a more telling number for

managers in logistics, manufacturing, or project scheduling. Even small changes in |ĒI,0| − |Ēπ
I |

usually lead to a surge in the number of feasible task sequences, and thus, in the number of feasible

solutions in the baseline optimization problem. Generally, the larger the number of tasks n is, the

larger the effect on the number of feasible sequences. For example, for instances of n = 20 from

ALPLib with T0 = 40 and OS(ĒI,0) = 1.0, the removal of just 28.24 precedence relations (the result

of the receding horizon approach Receding introduced later on in the text, see Table 1) leads to

74,400 additional feasible sequences on average. Whereas if we instead remove 31.37 precedence

relations (the result of the LSTD approach), the number of additional feasible sequences increases

by 90% to 141,300.

As for the first, we state an analytical approximation for the required number of queries, which

takes into account the derivation of indirect precedence relations from the answers of the expert.

This formula works surprisingly well in our experiments. Observe that in practice, the order

strength of the target graph is unknown. As Otto and Otto (2014) showed, no queries in the

DCVP-gen can be formulated regarding task pairs that have an indirect precedence relation in the

target graph, i.e. (i.j) /∈ E∗
I \ tr(E∗

I). Thus, the number of nontrivial queries to derive the target

precedence relations set with certainty cannot exceed:

|tr(E∗
I)|+

(
OS(ĒI,0)−OS(E∗

I)
)
· n(n− 1)

2
, (25)

Otto et al.: Working paper
27

which is the number of task pairs with a direct precedence relation on the target graph

(|tr(E∗
I)|) as well as the number of independent task pairs, whose status is initially unknown,

(
(
OS(ĒI,0)−OS(E∗

I))
)
· n(n−1)

2
). The first summand is usually proportional to n in ‘real-world’

graphs (it is between n and 3n in PSPLib by construction and does not exceed 2.36 ·n in ALPLib).

For example, if OS(ĒI,0) = 0.3, OS(E∗
I) = 0.2, n = 50 and assuming |tr(E∗

I)| = 1.5n, about 1.5 ·

50+ 0.1 · 50·49
2

≈ 197 queries are required to completely validate the data set. The estimate is sup-

ported by computational results in Figure 5a. This number is much lower than a naive estimate of
n·(n−1)

2
= 1225 queries, which is to state queries to each pair of tasks. It is also much lower than an

alternative naive estimate of |ĒI,0|= 0.3 · n·(n−1)

2
≈ 368.

To provide guidance for the following computational experiments, we analytically estimate the

probability that one of Naive’s queries removes a precedence relation from ĒI,0.

A trivial estimate is given by the share of existing precedence relations in the maximum prece-

dence relations set:

ptrivial =

(
OS(ĒI,0)−OS(E∗

I)
)
· n(n−1)

2

OS(ĒI,0) · n(n−1)

2

= 1− OS(E∗
I)

OS(ĒI,0)
. (26)

However, this bound neglects that Naive, as all our approaches, only asks about direct precedence

relations (see Assumption 6). Next, we improve the estimate by accounting for this, which also

nicely illustrates the value of Assumption 6:

pAss6 =

(
OS(ĒI,0)−OS(E∗

I)
)
· n(n−1)

2

|tr(E∗
I)|+

(
OS(ĒI,0)−OS(E∗

I)
)
· n(n−1)

2

(27)

Obviously, ptrivial < pAss6 since |tr(E∗
I)| < OS(E∗

I) · n(n−1)

2
. For example, if OS(ĒI,0) = 1.0,

OS(E∗
I) = 0.2, n = 50, T0 = 150 and assuming |tr(E∗

I)| = 1.5n, then Naive will remove approxi-

mately 139 precedence relations, or 90% to 95% of T0. If OS(E∗
I) = 0.9, instead, Naive will remove

precedence relations in just about 66% of queries.

Therefore, in the following experiments, we expect that even a limited number of queries will

remove a considerable number of precedence relations, which will result in a large number of

additional task sequences being recognized as feasible. Since Naive already performs very well in

certain settings, we expect the LSTD interview policy to have the largest advantage over Naive, if

OS(E∗
I) is high or (OS(ĒI,0)−OS(E∗

I)) is low.

5.3. Exploring benefits of partial data validation: Computational experiments

In a series of computational studies in this section, we attempt to quantify the benefits of structured

interviews in different settings. More precisely, we vary the proximity of the initial precedence

relations sets ĒI,0 and EI,0 to the target set in Section 5.3.1, the time budget T0 in Section 5.3.2,

as well as the quality of the baseline data on pij in Section 5.3.3.

Otto et al.: Working paper
28

Vertical dashes in the figures of the following subsections mark the largest improvement between

the respective policies. The absolute numbers refer to the difference in the average number of the

removed precedence relations, and the percentages translate this number into the percentage points

of the respective outperformed policy. For example, in Figure 5b, the largest ‘belly’ between Myopic

and Naive is observed at L = 5 with OS(ĒI,0) = 0.79; at this point, Myopic removes 41.3 more

precedence relations on average and outperforms Naive by 46.9%. The largest ‘belly’ between LSTD

and Myopic in the same figure occurs at ĒI,0 = 0.71, where LSTD removes 10.5 more precedence

relations on average and outperforms Myopic by 10.3%.

If not otherwise stated, we set T0 := 150 for the ALPLib instances of n= 50 tasks and T0 := 100

for PSPLib instances of n= 30.

5.3.1. Influence of the initial precedence relations sets. In this section, we investigate

how the behaviour of Naive, Myopic and LSTD depends on the quality (i.e. the tightness) of ĒI,0

and EI,0. Recall that ĒI,0 and EI,0 directly impact the cardinality of the initial uncertainty set.

We simulate two realistic business scenarios:

(a) Set ĒI,0 is based on one or several initial feasible sequences of tasks.

This setting is motivated by practices in manufacturing described by Klindworth et al. (2012).

Initial feasible sequences of tasks stem from actual past production plans that differ from each

other (are re-balanced) because, e.g., of changing demand.

(b) Sets ĒI,0 and EI,0 are based on initial limited data entry by experts.

We simulate this setting by conducting a myopic pre-interview (as in the Myopic algorithm)

with a limited number of queries.

(a) Ē0 based on one or several initial feasible sequences of tasks

We generate the initial sequences of tasks as follows. The first sequence is< 1, . . . , n >. Afterwards

for each instance, we continue adding further feasible sequences of tasks one by one and by doing

so, we remove more and more precedence relations from the resulting set ĒI,0. Each such additional

sequence of tasks is generated randomly based on E∗
I . Figure 5 reports the results of the interviews

with ĒI,0 that resulted from L ∈ {1,2,3,4,5,10, · · · ,195,200} additional sequences of tasks. Value

L is depicted on the upper horizontal axis.

For the sake of comparability with further computational studies, we add an additional (lower)

horizontal axis that depicts the average order strength of ĒI,0. More precisely, each point i corre-

sponds to the instances with L := Li additional sequences of tasks, and the horizontal coordinate

of point i equals to the average order strength of the resulting ĒI,0, correspondingly. Note that,

obviously, for each instance OS(ĒI,0)≥OS(E∗
I) holds.

Otto et al.: Working paper
29

(a) ALPLib, OS(E∗) = 0.2 (b) ALPLib, OS(E∗) = 0.6 (c) ALPLib, OS(E∗) = 0.9

(d) PSPLib, OS(E∗)< 0.5 (e) PSPLib, OS(E∗)≥ 0.5

Figure 5 The influence of the initial maximum precedence relations set.
Note. ĒI,0 is derived based on one or several initially known feasible sequences of tasks.

As Figures 5 shows, structured interviews significantly outperform the Naive policy if OS(ĒI,0)

is not too similar to OS(E∗
I). The improvement between LSTD and Naive reaches 34-54% depend-

ing on the setting. Between LSTD and Myopic, improvements of up to 3%-19% are observed in

the examined settings. For example, for ALPLib and OS(E∗) = 0.6 in Figure 5b, the difference

between Naive and Myopic is the biggest at OS(E∗) = 0.79 (corresponds to L= 5), here Myopic

outperforms Naive by 41.3 or 46.9%. At this point, LSTD removes 4.7 more precedence relations

than Naive, so that the total advantage of LSTD over Naive equals 46.0 (or 52.2%). The improve-

ment of LSTD over Naive in this figure remains significant, even if only one feasible sequence of

tasks is available and equals 17.8 (or 14.1%). For both ALPLib and PSPLib, we observe that if

OS(Ē) only slightly exceeds OS(E∗), all three approaches perform very similarly. For example,

for ALPLib with OS(E∗) = 0.6 (Figure 5b) this is the case for OS < 0.65 (L ≥ 100). There, the

initial maximum precedence relations set is very close to the target precedence relations set, and

the interview questions are sufficient to derive the target precedence relations set almost exactly

(cf. Expression 25).

For all the policies, the number of removed precedence relations increases in the order strength

of ĒI,0. This is as expected, since the share of unnecessary precedence relations in ĒI,0 increases.

(b) Ē0 and E0 based on initial limited data entry by experts

Otto et al.: Working paper
30

In this study, we generate ĒI,0 and EI,0 from a myopic ’pre-interview’. Specifically for each

instance I, based on the first sequence < 1, . . . , n >, we perform a myopic pre-interview by revealing

information an increasing number of queries (generated as described by the Myopic policy) and, as

a consequence, by changing ĒI,0 and EI,0 incrementally. Figure 6 reports results based on the pre-

interviews with TM ∈ {0,50, . . .1000} queries. The value of TM is depicted on the upper horizontal

axis. An additional lower horizontal axis shows the resulting average order strength of ĒI,0.

The overall pattern revealed by Figure 6 is similar to that of Figure 5 from the previous study.

The advantage of the structured interviews over the baseline Naive policy is significant if OS(ĒI,0)

is not too similar to OS(E∗
I) and reaches 18.3-44.0% depending on the setting. The main difference

with the previous study is that for the same OS(ĒI,0) on the lower horizontal axis, more information

is available since EI,0 ̸= ∅ is usually true. Overall, the difference in the performance of Myopic

and LSTD in case of low and medium OS(E∗
I) got larger. Whereas the observed improvement of

LSTD over Myopic for OS(E∗
I) = 0.6 in the previous study equaled 10.3%, it reaches 20.5 % in this

study in the same ALPLib instances. Apparently, LSTD is much better in exploiting the additional

information on the available precedence relations of EI,0 than Myopic. The specific reasons for this

behavior remain to be explored in future research.

(a) ALPLib, OS(E∗) = 0.2 (b) ALPLib, OS(E∗) = 0.6 (c) ALPLib, OS(E∗) = 0.9

(d) PSPLib, OS(E∗)< 0.5 (e) PSPLib, OS(E∗)≥ 0.5

Figure 6 The influence of the initial maximum and minimum precedence relations sets: ĒI,0 and EI,0 are derived

based on initial limited data entry by experts

Otto et al.: Working paper
31

5.3.2. Influence of the time budget T0. Figure 7 reports on the performance of the three

policies depending on the duration T0 ∈ {0,50, · · · ,950,1000} of the interview. Observe that the

maximum value of the vertical axis is several times larger than in the previous figures.

This experiment confirms significant improvements in structured interviews following the Myopic

and LSTD policies over Naive. The largest improvement in LSTD over Naive is achieved at T0 :=

350,250 and 100 for ALPLib with OS(E∗
I) = 0.2,0.6 and 0.9, respectively, as well as at T0 := 100

for PSPLib instances. The best results of Myopic over Naive are achieved at T0 := 300,200,100

and 50 for the above cited settings, correspondingly.

Interesting is the position of the ‘belly’ in the relative dynamics of the curves: the three policies

have similar absolute performances in the absolute values at low T0, perform differently at medium

T0 and show similar results once again at big T0. The flattening-out points are predicted quite well

by Expression (25). We also observe that LSTD reaches its maximum advantage over Myopic if

the interview is sufficiently long (the ‘belly’ lies to the right of that between Myopic and Naive).

Indeed, recall that initially only queries to certain task pairs (task pairs in tr(ĒI,0)) are possible.

LSTD strategically attempts to access the regions of ĒI,0 with attractive queries. Such a trade off

of immediate effects for longer term benefits is only possible if the time budget is large enough.

Therefore, at small values of T0, LSTD resembles Myopic.

(a) ASPLib, OS(E∗) = 0.2 (b) ASPLib, OS(E∗) = 0.6 (c) ASPLib, OS(E∗) = 0.9

(d) PSPLib OS(E∗)< 0.5 (e) PSPLib, OS(E∗)≥ 0.5

Figure 7 Influence of time budget T0

Otto et al.: Working paper
32

5.3.3. Influence of the baseline data quality. In this section, we investigate how the

outcome of the interview depends on the correct estimation of the probabilities pij. We estimate

probabilities pij as described in Algorithm 2, but vary the noise index ξ (whose default value was

0.2) from 0.0 to 1.0. The share of task pairs in ĒI,0 with ‘falsely’ estimated probabilities (0.9 for

(i, j)∈E∗
I and 0.1 for (i, j) /∈E∗

I) increases subproportionately with the increase of ξ. For example,

at ξ = 0.2,0.6 and 1.0, the share of task pairs in ĒI,0 with ‘falsely’ estimated probabilities equals

0.165, 0.350, and 0.433, respectively.

(a) ASPLib, OS(E∗) = 0.2 (b) ASPLib, OS(E∗) = 0.6 (c) ASPLib, OS(E∗) = 0.9

(d) PSPLib OS(E∗)< 0.5 (e) PSPLib, OS(E∗)≥ 0.5

Figure 8 Influence of data quality

Figure 8 shows the performance of Naive, Myopic, and LSTD for different data qualities. The

noise index is denoted on the lower horizontal axis, the share of ”false” probabilities on the upper

horizontal axis. If no probabilities are manipulated (ξ = 0.0), Myopic and LSTD remove exactly

T0 = 150 precedence relations, because they only ask questions regarding relations with pij = 0.9

and can remove all of them. As expected, Naive is not influenced by the data quality as it does

not use data on probabilities.

The results of structured interviews with LSTD and Myopic remain more attractive than the

baseline Naive policy even with very inaccurate data, although this advantage diminishes with

lower data quality. Although, LSTD has an edge over Myopic in dealing with inaccurate data, it is

especially pronounced with higher order strength of the target graph – for ALPLib instances with

Otto et al.: Working paper
33

OS(E∗
I) = 0.9. A possible explanation is the following: Myopic states queries to task pairs with high

pij (pij = 0.9) and breaks the ties randomly. At high OS(E∗
I), where the number of independent

task pairs is low, the share of task pairs with a precedence relations among the task pairs (i, j)

with pij = 0.9 is high, so the probability of a ‘mistake’ is also high. LSTD that relies on multiple

features is less sensitive for this effect. In other settings, LSTD outperforms Myopic moderately

by up to 5.3%.

5.4. Performance analysis of LSTD

In this section, we analyze the proposed LSTD policy in more detail. We use only instances of

ALPLib since the results of PSPLib and ALPLib were similar in all the previous computational

studies. We use, however, additional data sets of ALPLib – those with n = 20 and n = 100 – to

investigate the dynamics in the computational time with the growing instance size. In other words,

we investigate 525 · 3 = 1575 instances in total. Since the number of possible precedence relations

increases quadratically in the number of tasks n, we choose disproportionally more questions for

increasing n. We set T0 := 40,150 and 600 for n= 20,50 and 100, respectively.

Observe that an exact solution to the DCVP-gen instances is too computationally expensive even

for reasonably small instances, therefore we benchmark the performance of LSTD to a receding

horizon policy, which we dub Receding. This type of benchmark is quite common in approximate

dynamic programming.

Receding: In Receding we exactly solve the DCVP-gen via backwards recursion, but only for a

limited horizon of at most TRH , more precisely,

XRH(S) = argmax
(i,j)∈X(S)

pij · (C(S, (i, j),1)+B(S̄RH
ij))+ (1− pij) ·B(SRH

ij) (28)

with S̄RH
ij = (Ē \ (i, j),E,min(T,TRH)−τij) and SRH

ij = (Ē,E∪ (i, j),min(T,TRH)−τij). In the fol-

lowing, we set the horizon to TRH = 2 such that the interviewer anticipates the next two questions,

because of the large computational times per query for instances with n= 100.

Table 1 Comparison of the Approaches for ALPLib, n= 20, T0 = 40.

Avg. # removed precedence relations machine time per

approach OS(E∗) = 0.2 OS(E∗) = 0.6 OS(E∗) = 0.9 query [s]

Naive 35.7 31.7 22.1 0.000
Myopic 39.0 37.7 27.8 0.000
Receding 39.0 37.7 28.2 0.027
LSTD 39.0 37.8 31.4 0.001

As Tables 1, 2, and 3 show, the performance of Receding is quite close to that of Myopic and

Receding never outperforms LSTD in the settings considered. For small order strength (OS(E∗
I)≤

Otto et al.: Working paper
34

Table 2 Comparison of the Approaches for ALPLib, n= 50, T0 = 150.

Avg. # removed precedence relations machine time per

approach OS(E∗) = 0.2 OS(E∗) = 0.6 OS(E∗) = 0.9 query [s]

Naive 140.8 126.3 79.8 0.000
Myopic 147.8 144.4 97.5 0.000
Receding 147.7 144.2 98.4 0.322
LSTD 147.7 144.2 116.2 0.011

Table 3 Comparison of the Approaches for ALPLib, n= 100, T0 = 600.

Avg. # removed precedence relations machine time per
approach OS(E∗) = 0.2 OS(E∗) = 0.6 OS(E∗) = 0.9 query [s]

Naive 564.7 523.1 383.1 0.001
Myopic 591.9 580.6 418.6 0.001
Receding 591.9 580.7 417.5 3.628
LSTD 591.9 583.7 466.6 0.138

0.6, except n= 100), there is no statistically significant difference between Myopic, Receding, and

LSTD, whereas Naive has an inferior performance. For higher order strength (OS(E∗
I) = 0.9),

LSTD, which anticipates the whole interview, outperforms Receding by 14% to 28%.

Overall, LSTD is over 25 times faster than Receding in terms of the required time per query.

Note that for LSTD, the value function approximation must be learned upfront. As this task is

done before the interview, the runtime is not critical. It is quite fast, with under 1 min for an

instance with n= 50 and T0 = 150 and under 15 min for an instance with n= 100 and T0 = 600.

5.5. Case study

In this section, we show with real-world data that an interview with a limited number of queries

can indeed achieve a considerable improvement in the business result.

In our case study, we examine line balancing in the cockpit assembly of a large German auto-

mobile manufacturer. The data of the case study was originally described by Gebler (2021).

Figure 9: Cockpit

Station 1 Station 2

Figure 10: Schematic example of an assembly line with two sta-
tions

The cockpit is one of the most complex components of an automobile (see Figure 9). During the

cockpit assembly, a standardized pre-assembled cockpit module is installed semi-automatically. A

Otto et al.: Working paper
35

number of additional parts are mounted depending on the customer’s order, such as the instrument

panel, gear shift levers, navigation and entertainment systems, operating elements, as well as decor

elements. The cockpit assembly includes preparatory operations, the mounting operations of the

above mentioned parts, as well as the final quality tests.

In the cockpit assembly line, workpieces (painted car bodies) are moved along sequentially

arranged stations (see Figure 10 for a schematic representation of an assembly line). Each workpiece

is available for assembly at a specific station for a certain amount of time, the so-called cycle time

c. After that, it is moved to the next station. Each task i ∈ V is non-preemptive and its duration

ti is given. The precedence relations are described by the true precedence relations set E∗ . The

objective of assembly line balancing is to assign tasks to stations, such that:

• the total duration of tasks assigned to the same station does not exceed cycle time c,

• the precedence relations are respected,

• the number of required stations is minimized (which is equivalent to the minimization of total

unproductive time).

The formulated problem is known as the simple assembly line balancing problem (SALBP) in

the literature. The SALBP is a well researched problem (see, e.g., Battaia and Dolgui (2013),

Baybars (1986), Becker and Scholl (2006), Boysen et al. (2008) and Scholl and Becker (2006) for

an overview of the SALBP and its extensions). In the company we studied, further objectives and

constraints are important besides the minimization of the total unproductive time. These are, e.g.,

the minimization of the ergonomic risks, the minimization of the maximum number of different

parts requested by one station, and fairness. For the sake of data anonymization and according

to the consent with our cooperation partner, we focus on the discussion of the single ‘classical’

SALBP-objective.

Figure 11 Target Precedence Relations Set Depicted as a Graph.

Note. Nodes are tasks and arcs depict direct precedence relations.

The target graph in the case study consists of 86 tasks (see Figure 11), has an order strength

of 0.79 and contains tr(|E∗|) = 136 direct precedence relations. Task times vary between 0.05 and

Otto et al.: Working paper
36

50.69 time units, with an average of 8.85 and a standard deviation of 12.01. Such a distribution of

task times that is skewed to the left is common in assembly operations in practice (Dudley 1968,

Mason et al. 2005). The remaining parameters are based on consultations with practitioners. In

particular, we set the cycle time to maxi∈V ti and derive the initial maximum precedence relations

set Ē0 from a single feasible sequence of tasks. The optimal number of stations that corresponds to

Ē0 is 20. We generate probabilities pij as described in Section 5.1 with the noise index ξ := 0.2. We

set all times τij := 1 since the cockpit assembly belongs to the area of responsibility and expertise

of a single industrial engineer. As the minimum precedence relations set, we use E := {(i, j) ∈

V × V |(i, j) ∈ E∗, ti + tj ≤ 5}. In other words, the precedence relations between small tasks are

known.

We perform 20 simulation runs, each with a distinct set of generated probabilities and report

an average result for these runs. For each run and examined approach, the SALBP was solved to

optimality with the exact algorithm SALOME of Scholl and Klein (1997).

As Table 4 shows, LSTD clearly outperforms the other approaches. It removes 5% more prece-

dence relations than the second best approach Myopic and 23.4% more precedence relations than

the baseline approach Naive. Most interesting is how this removal of unnecessary precedence rela-

tions translates into the improvement of F (·|Ē). In our case, F (·|Ē) is the SALBP’s objective

function – the minimization of the number of stations. After T0 := 300 queries, which is only

300
n(n−1)

2

= 8.2% of all possible queries (task pairs), LSTD removes 0.25 stations (or about 0.25
2

=

12.5%) more on average than the other tested interview approaches. This is a significant reduction

for the company. Moreover, as our collaborating partner noticed, with 281.40 precedence relations

removed by the LSTD, a large number of additional task sequences are now recognized as feasible

(cf. Section 5.2), which permits the achievement of much better results for the aforementioned

additional decision criteria as well (such as ergonomics, fairness etc.).

In total, LSTD removes 2.25 stations, which makes for a 2.25
20

= 11.25% improvement of the

20-station solution based on Ē0. Assuming that answering one query takes about 1 minute on

average, with around 5 hours of the expert’s time invested in the data validation guided by LSTD,

a significant improvement in the business result can be achieved.

6. Conclusion and future research

In this article, we formulated the Data Collection and Validation Problem (DCVP) centered around

the data on precedence relations, which aims to maximize the business result given the limited

expert time available for data processing. The DCVP takes one or several known (e.g., manually

constructed) feasible sequences of tasks as input. Afterwards, queries can be dynamically stated to

the expert about precedence relations regarding selected pairs of tasks (i, j). The duration of the

Otto et al.: Working paper
37

Table 4 Performance of the Interview Approaches in the Study of the Cockpit Assembly with n= 86, T0 = 300.

approach π avg # removed avg reduction in # stations,

precedence relations F (·|Ē0)−F (·|Ēπ)

Naive 227.9 2.00
Myopic 268.9 2.00
Receding 267.1 2.00
LSTD 281.4 2.25

resulting interview is limited by the time budget T0. The DCVP outputs a best possible solution

for the baseline problem, for which the data is collected,– such as a production plan or a project

schedule – which is guaranteed to be feasible given the collected and validated data. In other

words, the DCVP can change the relative execution sequence of only those tasks relative to each

other, whose precedence relation was ‘removed’ by the knowledgeable expert. To the best of our

knowledge, we are the first to formulate and analyze the DCVP in literature.

The formulated DCVP is considered a novelty also in terms of the methodological side. This is

because it can be interpreted as a robust adjustable multistage optimization problem, in which the

uncertainty set depends on the previously taken decisions. To the best of our knowledge, no such

dynamic approach to uncertainty sets in robust optimization problems has been previously studied

within literature.

Since the DCVP depends on the application-specific objective function F , we extracted a

universally-valid problem counterpart DCVP-gen (general DCVP) by formulating an appropriate

surrogate objective function based on general properties of F . As a consequence, the proposed

interview policies and the results of our analysis can be directly applied to a wide range of appli-

cations. We modeled the DCVP-gen as a dynamic program and analyzed its complexity and a

number of its additional relevant properties. We also suggested a customized least squares temporal

difference algorithm LSTD to solve it. We showed that partial validation of the data on precedence

relations is valuable and illustrated that structured (’optimized’) interview policies with experts

can considerably outperform the baseline random interview policy Naive. Depending on the setting,

LSTD outperforms Naive by up to 20-40% in terms of removed unnecessary precedence relations,

helping to recognize many thousands of additional feasible task sequences. The main performance

drivers are the quality of the initially known information on Ē0 and E0 as well as the time budget

T0. In a case study on data provided by a large German automaker, we confirm the advantages of

the structured interview approach LSTD. Most importantly, we show that a limited investment of

expert time in data collection and the validation of 300 queries (or 5 hours of expert time assuming

1 minute per query on average) leads to an improvement of about 11.25% in the business result.

Otto et al.: Working paper
38

In future research, the proposed general ADP-methodology should be adapted to specific appli-

cations and specific objective functions F by, for example, adapting the surrogate function and

extending the features ϕk in the value function approximation.

Future research should also study further application-specific data structures and forms of query-

ing the expert knowledge. For instance, hierarchical data structures of precedence relations are

common in the final assembly. Here, certain statements on precedence relations can be formulated

for groups of tasks, called modules; e.g., module ‘door’ can be assembled independently from mod-

ule ‘motor’ (Otto and Otto 2014). Moreover, in certain settings, experts may provide information

for a group of geometrically related tasks based on CAD-schemes, or comment on the feasibil-

ity of (reasonably short) subsequences of tasks. Most importantly, the optimization lens on data

validation should be applied to further classes of data.

Acknowledgments

This project was funded by the Deutsche Forschungsgemeinschaft (DFG – German Research Foun-

dation) as part of the SuPerPlan project GZ: OT 500/4-1 as well as by the Federal Ministry of

Transport and Digital Infrastructure within the framework of the joint project ‘KIMoNo’ (FKZ:

45KI01A011).

The authors cooperated with Dr. Gebler, Volkswagen AG, and are very grateful to him for his

valuable insights into the operational planning on assembly lines.

References

Aho AV, Garey MR, Ullman JD (1972) The transitive reduction of a directed graph. SIAM Journal on

Computing 1(2):131–137, URL http://dx.doi.org/10.1137/0201008.

Antani K, Pearce B, Mears L, Renu R, Kury M, Schulte J (2014) Application of system learning to precedence

graph generation for assembly line balancing. Proceedings of the ASME 2014 International Manufac-

turing Science and Engineering Conference (MSEC2014-3906):1–10.

Arun M, Rao C (2010) A CAD system for extraction of mating features in an assembly. Assembly Automation

30(2):142–146.

Battaia O, Dolgui A (2013) A taxonomy of line balancing problems and their solution approaches. Interna-

tional Journal of Production Economics 142(2):259–277.

Baybars İ (1986) A survey of exact algorithms for the simple assembly line balancing problem. Management

Science 32(8):909–932.

Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing.

European Journal of Operational Research 168(3):694–715.

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust Optimization (Princeton University Press: New Jersey).

http://dx.doi.org/10.1137/0201008

Otto et al.: Working paper
39

Bertsimas D, Gupta V, Kallus N (2017) Data-driven robust optimization. Mathematical Programming

167(2):235–292.

Billard A, Calinon S, Dillmann R, Schaal S (2008) Survey: Robot programming by demonstration. Springer

Handbook of Robotics 1371–1394.

Bourjault A (1987) Contribution a une approche méthodologique del’assemblage automatisé: Elaboration

automatique des séquences opératiores. Ph.D. thesis, L’Université de Franche-Comté.

Boysen N, Fliedner M, Scholl A (2008) Assembly line balancing: Which model to use when? International

Journal of Production Economics 111(2):509–528.

Boysen N, Fliedner M, Scholl A (2009) Assembly line balancing: Joint precedence graphs under high product

variety. IIE Transactions 41(3):183–193.

Bozhko A (2020) Minimizing geometric tests in CAAP-systems. International Conference: Actual Issues of

Mechanical Engineering 111(27th-29th of October).

Davenport T (1997) Information Ecology: Mastering the Information and Knowledge Environment (Oxford

University Press: New York).

de Fazio T, Rhee S, Whitney D (1999) Design-specific approach to design for assembly (DFA) for complex

mechanical assemblies. IEEE Transactions on Robotics and Automation 15(5):869–881.

de Fazio T, Whitney D (1987) Simplified generation of all mechanicalassembly sequences. IEEE Journal of

Robotics and Automation 3(6):640–658.

De Jong H (2002) Modeling and simulation of genetic regulatory systems: A literature review. Journal of

Computational Biology 9(1):67–103.

Deepak B, Murali G, Bahubalendruni M, Biswal B (2018) Assembly sequence planning using soft computing

methods: A review. Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process

Mechanical Engineering 233(3):653–683.

Demeulemeester E, Herroelen W (1992) A branch-and-bound procedure for the multiple resource-constrained

project scheduling problem. Management Science 38(12):1803–1818.

Demoly F, Yan X, Eynard B, Rivest L, Gomes S (2011) An assembly oriented design framework for product

structure engineering and assembly sequence planning. Robotics and Computer-Integrated Manufactur-

ing 27(1):33–46.

Dudley NA (1968) Work Measurement: Some Research Studies (McMillan Education: London).

Dyer M, Stougie L (2006) Computational complexity of stochastic programming problems. Mathematical

Programming 106:423–432.

Escobar C, McGovern M, Moralez-Menendez R (2021) Quality 4.0: A review of big data challenges in

manufacturing. Journal of Intelligent Manufacturing 32:2319–2334.

Otto et al.: Working paper
40

[Forbes, KPMG] (2016) Now or Never: 2016 Global CEO Outlook. Technical Report June, Forbes Insights,

KPMG International.

Gebler M (2021) Industrialisierung von Optimierungsmethoden zur automatisierten Fließbandabstimmung in

der Automobilindustrie. Ph.D. thesis, Friedrich Schiller University of Jena.

Gertsbakh I, Serafini P (1991) Periodic transportation schedules with flexible departure times: An interactive

approach based on the periodic event scheduling problem and the deficit function approach. European

Journal of Operational Research 50(3):298–309.

Han B, Shang C, Huang D (2021) Multiple kernel learning-aided robust optimization: Learning algorithm,

computational tractability, and usage in multi-stage decision-making. European Journal of Operational

Research 292(3):1004–1018.

Hanasusanto GA, Kuhn D, Wiesemann W (2016) A comment on ”Computational complexity of stochastic

programming problems”. Mathematical Programming 159:557–569.

Hauptmeier D, Krumke S, Rambau J, Wirth HC (2001) Euler is standing in line dial-a-ride problems with

precedence-constraints. Discrete Applied Mathematics 113(1):87–107.

Hlady W, Quenemoen LE, Armenia-Cope RR, Hurt KJ, Malilay J, Noji EK, Wurm G (1994) Use of a

modified cluster sampling method to perform rapid needs assessment after hurricane andrew. Annals

of Emergency Medicine 23(4):719–725.

Homem de Mello L, Sanderson A (1991) A correct and complete algorithm for the generation of mechanical

assembly sequences. IEEE Transactions on Robotics and Automation 7:228–240.

Huang M, Smilowitz KR, Balcik B (2013) A continuous approximation approach for assessment routing in

disaster relief. Transportation Research Part B: Methodological 50:20–41.

Kardosh C, Kovács A, Vánza J (2020) A constraint model for assembly planning. Journal of Manufacturing

Systems 54:196–203.

Kashkoush M, ElMaraghy H (2014) Consensus tree method for generating master assembly sequence. Pro-

duction Engineering: Research and Development 8:233–242.

Klindworth H, Otto C, Scholl A (2012) On a learning precedence graph concept for the automotive industry.

European Journal of Operational Research 217(2):259–269.

Kolisch R, Schwindt C, Sprecher A (1999) Handbook on recent advances in project scheduling, chapter Bench-

mark instances for project scheduling problems, 197–212 (Springer: Boston).

Kolisch R, Sprecher A (1996) PSPLIB – A project scheduling library. European Journal of Operational

Research 96(1):205–216.

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-

constrained project scheduling problems. Management Science 41(10):1693–1703.

Kovacs G, Moshtari M (2019) A roadmap for higher research quality in humanitarian operations: A method-

ological perspective. European Journal of Operational Research 276(2):395–408.

Otto et al.: Working paper
41

Krishnan V, Ulrich K (2001) Product development decisions: A review of the literature. Management Science

47(1):1–21.

Lagriffoul F, Dimitrov D, Saffiotti A, Karlsson L (2012) Constraint propagation on interval bounds for dealing

with geometric backtracking. Proceedings IEEE International Conference on Robotics and Automation

957–964.

Lambert A (2006) Generation of assembly graphs by systematic analysis of assembly structures. European

Journal of Operational Research 168(3):932–951.

Lee WP, Lee WP, Tzou WS (2009) Computational methods for discovering genenetworks from expression

data. Briefings in Bioinformatics 10(4):408–423.

Lin A, Chang T (1993) An integrated approach to automated assembly planning for three-dimensional

mechanical products. The International Journal of Production Research 31(5):1201–1227.

Manrique R, Sosa J, Marino O, Nunes BP, Cardozo N (2018) Investigating learning resources precedence

relations via concept prerequisite learning. 2018 IEEE/WIC/ACM International Conference on Web

Intelligence (WI), 198–205 (IEEE).

Markowetz F, Spang R (2007) Inferring cellular networks – a review. BMC Bioinformatics 8(S5).

Mason S, Baines T, Kay J, Ladbrook J (2005) Improving the design process for factories: Modeling human

performance variation. Journal of Manufacturing Systems 24(1):47–54.

Niu X, Ding H, Xiong Y (2003) A hierarchical approach to generating precedence graphs for assembly

planning. International Journal of Machine Tools and Manufacture 43(14):1473–1486.

Otto A, Otto C, Scholl A (2013) Systematic data generation and test design for solution algorithms on

the example of SALBPGen for assembly line balancing. European Journal of Operational Research

228(1):33–45.

Otto C, Otto A (2014) Multiple-source learning precedence graph concept for the automotive industry.

European Journal of Operational Research 234(1):253–265.

Pardowitz M, Zollner R, Dillmann R (2005) Learning sequential constraints of tasks from user demonstra-

tions. 5th IEEE-RAS International Conference on Humanoid Robots, 2005., 424–429 (IEEE).

Pinnoi A, Wilhelm W (1998) Assembly system design: A branch and cut approach. Management Science

44(1):1–148.

Powell WB (2011) Approximate Dynamic Programming (John Wiley & Sons, Inc.).

Powell WB, Ryzhov IO (2012) Optimal Learning (John Wiley & Sons, Inc.).

Qu LM, Xu X (2013) Relationship matric based automatic assembly sequence generation from a CAD model.

Computer-Aided Design 45(7):1053–1067.

Redman T (1998) The impact of poor data quality on the typical enterprises. Communications of the ACM

41(2):70–82.

Otto et al.: Working paper
42

Rodŕıgez I, Bauer A, Nottensteiner K, Leidner D, Grunwald G, Roa M (2021) Autonomous robot planning

system for in-space assembly of reconfigurable structures. 2021 IEEE Aerospace Conference (6-13th of

March).

Rodŕıgez i, Nottensteiner K, Leidner D, Kaßecker M, Stulp F, Albu-Schäfer A (2019) Iteratively refined feasi-

bility checks in robotic assembly sequence planning. IEEE Robotics and Automation Letters 4(2):1416–

1423.

Sanders Y D ad Tan, Rogers I, Tewkesbury G (2009) An expert system for automatic design-for-assembly.

Assembly Automation 29(4):378–388.

Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line

balancing. European Journal of Operational Research 168(3):666–693.

Scholl A, Klein R (1997) SALOME: A bidirectional branch-and-bound procedure for assembly line balancing.

INFORMS Journal on Computing 9(4):319–451.

Srivastava S, Fang E, Riano L, Chitnis R, Russell S, Abbeel P (2014) Combined task and motion planning

through an extensible planner-independent interface layer. Proceedings IEEE International Conference

on Robotics and Automation (31st of May - 5th of June):639–646.

Su Q (2009) A hierarchical approach on assembly sequence planning and optimal sequences analyzing.

Robotics and Computer-Integrated Manufacturing 25(1):224–234.

Vigano R, Gómez G (2013) Automatic assembly sequence exploration without precedence definition. Inter-

national Journal on Interactive Design and Manufacturing 7:79–89.

Wan W, Harada K, Nagata K (2017) Assembly sequence planning for motion planning. Assembly Automation

38(2):195–206.

Wang L, Keshavarymanesh S, Feng H, Buchal R (2009) Assembly process planning and its future in col-

laborative manufacturing: A review. The International Journal of Advanced Manufacturing Technology

41:132–144.

Wang Y, Liu J (2010) Chaotic particle swarm optimization for assembly sequence planning. Robotics and

Computer-Integrated Manufacturing 26(2):212–222.

Wang Y, Yuan Z, Sun C (2018) Research on assembly sequence planning and optimization of precast concrete

buildings. Journal of Civil Engineering and Management 24(2):106–115.

Wojtczak D (2018) On strong NP-completeness of rational problems. Lecture Notes in Computer Science

10846:308–320.

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software fault localization. IEEE Trans-

actions on Software Engineering 42(8):707–740.

Yanıkoğlu İ, Gorissen BL, den Hertog D (2019) A survey of adjustable robust optimization. European Journal

of Operational Research 277(3):799–813.

Otto et al.: Working paper
43

Zha X, Lim S, Fok S (1998) Integrated intelligent design and assembly planning: A survey. The International

Journal of Advanced Manufacturing Technology 14:664–685.

Otto et al.: Working paper
44

Appendix. Details for Example 2

In Figures 12 - 14, we provide decision trees for the evaluation of the policies mentioned in Figure 3.

Decision nodes are illustrated as squares, chance nodes as circles. If a random decision is made as a tie-

breaker, this is illustrated as a circle inside the decision node.

Figure 12 Naive Policy for the Example from Figure 3.

Decision
(about query)

Outcome
(answer)

Decision
(about query)

Outcome
(answer)

Naive

of relations
removed

2

1

2

1

1

0

1

0

ask BC

1.5

0.5

1.089

Chance node

Decision node
with random
decision (Naive)

2

1

2

1

1

0

1

0

1.617

0.55

2

1

Recall: Forecast
(probabilities 𝑝𝑖𝑗)

A

B

C

D E

0.75

0.5 0.5

0.6

Otto et al.: Working paper
45

Figure 13 Myopic Policy for the Example from Figure 3.

Decision
(about query)

Outcome
(answer)

Decision
(about query)

Outcome
(answer)

myopic

of relations
removed

2

1

2

1

1

0

1

0

ask BC

1.5

0.5

1.100

Chance node

Decision node

Decision node with
random decision (tie)

.

.

.

 .

 .

 .

Otto et al.: Working paper
46

Figure 14 Optimal Policy for the Example from Figure 3.

Decision
(about query)

Outcome
(answer)

Decision
(about query)

Outcome
(answer)

Structured/
Optimized

of relations
removed

2

1

2

1

1

0

1

0

ask BC

1.5

0.5

1.175

Chance node

Decision node

Decision node with
random decision (tie)

2

1

2

1

1

0

1

0

1.75

0.6

2

1

Recall : Forecast
(probabilities 𝑝𝑖𝑗)

A

B

C

D E

0.75

0.5 0.5

0.6

	1 Introduction
	2 Literature review
	3 The data collection and validation problem
	3.1 Problem statement for the DCVP
	3.2 Generalized problem statement: DCVP-gen
	3.3 Discussion of assumptions
	3.4 Dynamic program for the DCVP-gen
	3.5 Analytical results

	4 Approximate dynamic programming
	5 Computational experiments
	5.1 Benchmark data sets and algorithms evaluated
	5.2 Exploring the potential of partial data validation: Analytical approximation
	5.3 Exploring benefits of partial data validation: Computational experiments
	5.3.1 Influence of the initial precedence relations sets.
	5.3.2 Influence of the time budget T0.
	5.3.3 Influence of the baseline data quality.

	5.4 Performance analysis of LSTD
	5.5 Case study

	6 Conclusion and future research

