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Abstract  

We examine information sharing among academics during the research process and show it is context 
dependent because of differences in trade-offs. When researchers respond to specific requests for 
information or materials, potential future reciprocity is weighed against the current loss of 
competitiveness, while general sharing intermediate results in an open forum is driven by the need for 
feedback versus potential misappropriation. We formally model these trade-offs and empirically test for 
differences using a survey of German and UK bio-scientists. Increased competition has a negative impact 
on sharing in both contexts. But career stage has an effect only on specific sharing with untenured faculty 
less likely to share. Further, scientists in larger teams are more likely to share specifically, but less likely 
to share generally. The importance of patents for one's reputation reduces sharing in both contexts, but the 
effect is greater for general information sharing.  
 
Keywords: Information sharing, open science, scientific competition, knowledge diffusion, 

misappropriation.   



2 
	
  

	
  

1  Introduction 

Information sharing is critical to scientific progress, so much so that the Mertonian norm of 

unconditional sharing of knowledge is considered one of the defining features of academic life (Merton, 

1973). In principle, this norm is enforced by a priority-based scientific reward system in which the first 

person to discover a result gets whatever "prize" is associated with discovery (Dasgupta and David, 1987; 

Stephan, 1996). There is a tension, however, between communal sharing and the competitive incentives 

for researchers during the research process itself (Hagstrom, 1965; 1974; Dasgupta and David, 1994; 

Murray and O'Mahony, 2007). This tension along with incentives created by the commercial potential of 

academic research has made restrictive sharing a common problem and heightened interest in information 

sharing among academic researchers (Blumenthal et al., 1996; Cohen and Walsh, 2008; Murray, 2010). 

We examine, theoretically and empirically, what drives competing academic researchers to share 

information during the research process. We consider two important contexts: specific sharing, where 

researchers share information about their work privately in response to a request and general sharing, 

where a researcher shares new, unpublished results publicly. Common examples of the former include 

sharing data, materials (such as cell line or mice), and information about techniques or details not released 

publicly. General sharing includes presentations, webpostings, and working papers.  

While the communal desire for information sharing is universal, particularly among public 

funding agencies (e.g., NSF, 2011; NIH, 2013), factors that encourage sharing in one context may not in 

another. In fact, we show that sharing can be highly context dependent because of differences in 

individual trade-offs and incentives. Our formal modeling allows us to characterize these trade-offs and 

set up an empirical test for differences in specific and general sharing.  

In specific sharing, a researcher who shares in response to a request from another bears the cost of 

preparing materials or documentation, but also, by providing access to the information, the researcher 

increases the probability that someone else will solve her research problem first. There is a potential 

benefit, but only in the future, and only if the requesting scientist has information of value and 

reciprocates. Hence, sharing depends on the likelihood of future reciprocity and the level of competition. 

In general sharing, a researcher who shares new results can gain immediate feedback, particularly if the 

audience includes researchers who have solved complementary parts of the problem. However, as with 

specific sharing, she increases the probablity someone else will win the prize for solving the problem. 

General sharing also has the benefit of providing credit, but only if the work is acknowledged. Unknown 

researchers in the audience may use the information without acknowledgement unless they risk 

independent verification or have a strong belief in the norms of open science. Important factors of sharing 

in this context are the value of feedback, beliefs about acknowledgement, and the level of competition.    

The empirical analysis uses a survey of bio-scientists in Germany and the United Kingdom which 
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provides individual level data on willingness to share in specific and general contexts.. The survey also 

includes information on the respondents’ perceptions of the level of competition in their field and 

demographic information such as career stage, the extent to which their research is basic, and the size of 

their research team. Our econometric analysis suggests that, except for three regressors (most notably the 

level of competition), what drives researchers to share information differs markedly. For example, we 

find members of larger teams are more likely to engage in specific sharing but less likely to share 

generally. Intuitively, economies of scale in larger teams reduce the cost of sharing in the context of 

specific sharing. With regard to general sharing, researchers in larger labs have a larger built-in network 

of colleagues for immediate feedback so that general sharing is less valuable, ceteris paribus. Moreover, 

in specific sharing, we find tenured faculty are more likely to share than untenured; in general sharing, 

tenure has no effect. This is consistent with the importance of future gains from reciprocity in specific 

sharing since untenured faculty may not be in a position to share in future periods.  

To our knowledge, this is the first study to formally model academic information sharing in these 

two contexts. Despite evidence that academics withhold information, there has been little theory to guide 

our understanding (Blumenthal et al., 1996; Campbell et al., 2002). With few exceptions, the theory has 

focused on firms (Von Hippel, 1987; Anton and Yao, 2002; 2004; Lerner and Tirole, 2002, Gächter et al., 

2010; Baker and Mezzetti, 2005; Hellmann and Perotti, 2011; Gans et al., 2011; Gill, 2008; Stein, 2008). 

The studies of academics focus on different issues, such as the trade-off between secrecy and publication 

(Mukherjee and Stern, 2009; Gans and Murray, 2010) or the impact of academic misconduct on research 

and publication decisions (Hoover, 2006; Lacetera and Zirulia, 2011). In contrast, we focus on sharing 

during the research process.  

With respect to empirics, prior work has either aggregated information sharing across contexts or 

focused solely on specific sharing. For example, Blumenthal et al.’s (2006) study of genetics and other 

life sciences examines perceived competition and sharing, but it combines information across the contexts 

we consider into a single variable. Hong and Walsh (2009) and Walsh et al. (2007) examine specific 

sharing and find that cost, involvement in business, students’ ability to publish, and scientific competition 

decrease sharing and Haeussler (2011) finds expected reciprocity and perceived adherence to the 

scientific norm of communalism to be important. While this literature compares the behavior of academic 

and industrial scientists, we are unaware of empirical evidence on sharing of the same individual in 

specific and general contexts. 

Combined, our results have interesting implications for policy. One factor which operates the 

same way in both models is competition or the value of the prize. This suggests negative unintended 

consequences for competitions with prizes, as well as a cautionary message for funding agencies to the 

extent that their funding levels affect the nature of competition. The general sharing model has the 
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interesting implication that journal policies regarding misappropriation have a spillover to sharing during 

the research process itself. Misappropriation is considered to be a major problem in science (Bailey et al., 

2001; Enders and Hoover, 2004; Birnholtz, 2006; Couzin-Frankel and Grom, 2009). We join Lacetera and 

Zirulia (2011) in our message for more journal attention to these issues. 

In the next section, we construct two simple models of specific and general sharing which 

highlight salient factors in the two context. Section 3 relates the propositions from the theory to empirical 

measures from the survey and presents the econometric analysis, as well as a discussion of empirical 

differences in the models. Section 4 provides clarifying remarks and implications for funding agencies 

and journals. 

 

2  Games of Information Sharing 

In developing the theory, it is important to keep in mind that the two types of sharing in question 

are not necessarily alternatives. A researcher may share some information privately (e.g., materials, 

techniques), while sharing other information (e.g., an entire working paper) publicly. Also the appropriate 

assumptions on timing and identity of the players who receive the information by specific and general 

sharing are quite different. Accordingly, we construct two models. 

To capture the rivalry created by the scientific reward system, we model the situations as games 

in which researchers are trying to solve a common problem. A complete solution earns a prize, 𝑊, such 

as publication, a Fields Medal or Nobel Prize with academic value and/or it can have commercial value.   

In both games, we assume that each researcher has solved a portion of the problem and/or 

developed materials of use in solving it. If a researcher shares her solution or materials, she makes it 

easier for the recipient(s) to earn the prize. The information could be materials (cell line, reagents), data or 

methods (software, lab technique), or intermediate research results.  

2.1  Specific Sharing 

Consider a game played in two periods. In the first, researcher 1 receives a request from 

researcher 2, and she decides whether or not to share. With probability α, the game continues to the 

second period and researcher 2 has information of value to researcher 1, in which case researcher 2 must 

decide whether or not to share. Each researcher’s expected payoff is the expected value of the prize plus 

the asset value of any information or materials gained in exchange minus the cost of the exchange. 

The game is "winner take all" so that each researcher gets 𝑊 with probability less than one.1 

Unilateral sharing by a researcher lowers her/his probability of winning the prize and raises the rival's 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 In this model 𝑊 is fixed, but we have also examined a model with the value of the prize as a positive function of 
the material shared and the results of interest are qualitatively similar. 
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probability. In the absence of sharing, x 𝑟!  and 1-x 𝑟!  represent the probability that researcher 1 and 2, 

respectively, wins the prize where 𝑟! ≥ 0 is the amount or quality of researcher 1's information 

requested by researcher 2. Unilateral sharing by researcher 1 reduces her probability of winning by 

𝛿!(𝑒!, 𝑟!) and increases 2's probability by 𝛿!.2 We assume that 𝛿! is an increasing function of   𝑟! and 

2's ability to exploit the information, 𝑒! ≥ 0. The shared information has an asset value 𝑉(𝑒!, 𝑟!) ≥ 0 

regardless of whether researcher 2 wins the prize. 𝑉(𝑒!, 𝑟!) reflects the extent to which the shared 

information reduces researcher 2's project cost and its value for use in other projects under the 

assumption that researcher 1 cannot credibly prevent such use. There is also a cost 𝑐! for researcher 1 

to share the information (e.g., ship a lab mouse). We assume the costs are sufficiently low that all 

expected payoffs are positive, and that the discount factor is one.  

To determine equilibrium behavior, we first need to consider researcher 2’s behavior should the 

game continue into the second period. For simplicity, we suppose the two researchers are again 

competing on a research problem with a prize W. In this period, it is researcher 2’s information that is of 

value. We represent researcher 1 and 2’s probabilities of winning by 1-  y(𝑟!) and y(𝑟!), respectively, 

where 𝑟! is the amount or quality of researcher 2's information requested by researcher 1. If researcher 

2’s first period request was denied, he will never share since he will raise researcher 1’s probability of 

winning by 𝛿!   and bear 𝑐! without any gain. If, however, researcher 1 honored his request in the first 

period, his expected payoff is (y − 𝛿!)𝑊 + 𝑉(𝑒!, 𝑟!) − 𝑐!   if he shares and y𝑊 + 𝑉(𝑒!, 𝑟!) −

𝑅!(𝑒!, 𝑟!, 𝜂) if he does not. We include the term 𝑅! to reflect the common cultural norm that a person 

receiving a favor is expected to reciprocate. Thus, 𝑅! is researcher 2’s reputational loss if he does not 

share. It is natural to think of this loss as increasing in all arguments and critically dependent on η, a norm 

of reciprocity for favors within the community (i.e., 𝑅!(𝑒!, 𝑟!, 0) = 0).  Thus researcher 2 will share if 

and only if 

𝑅! > 𝑅! ≡ 𝛿!(𝑒!, 𝑟!)𝑊 + 𝑐!.                               (1) 

The first researcher makes her decision taking researcher 2’s behavior and her expectation that 

the game will continue with researcher 2 having information of value, which we denote as α. It is easy to 

see that if 𝑅! < 𝑅!, the first researcher will refuse to share because she knows researcher 2 will not share 

in the second period and the return to her generosity in the first period, α [(1-y)W] + (1- α)[(x- δ1)W-c1], 

is smaller than the return to not sharing, α [(1-y)W]+ (1- α)xW. On the other hand, if 𝑅! > 𝑅!, she 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Absent competition, the researcher who shares the information would not necessarily reduce his/her own proba-
bility of winning. An example would be the case when the recipient uses the same techniques or information for a 
different problem. But here we focus on competing researchers. Also in a model of sharing among researchers with 
varying levels of competition, the competition parameter acts much like the W in our model. 
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knows that researcher 2 will share should the game continue, and her expected payoff is α	
  [(1 − y +

𝛿!)W+  𝑉(𝑒!, 𝑟!)] + (1- α)[(  x − 𝛿1)W−𝑐!  ]. This expression is greater than her expected payoff from 

not sharing, α [(1-y)W]+ (1- α)xW, for  

𝛼 > !!(!!,!!)!!!!  
!!(!!,!!)!!!!(!!,!!)!!!(!!,!!)!!!  

≡ 𝛼.                       (2) 

Sharing by both researchers is a pure strategy subgame perfect equilibrium if and only if 

conditions (1) and (2) hold.  

If either α or η equals zero, neither researcher shares in equilibrium. If α = 0, researcher 1 either 

foresees no need for information from the researcher who requested the information or, alternatively, may 

not envision future opportunities for him to share. An example of the latter situation, could be if either 

researcher faces a tenure decision or is close to retirement. The need for positive η bears special mention 

since it is well known that cooperative strategies, such as sharing, can occur in repeated games without 

community norms. For example, if we were to model sharing as a repeated simultaneous move Prisoner’s 

Dilemma game, sharing in the absence of such a norm could occur in equilibrium (Arribas and Urbano 

2005; Mailath and Samuelson 2006).3 However, we view the asynchronous move with a norm as more 

realistic. More to the point, the role of the theory is to derive testable hypotheses for the empirical 

analysis where the impact of norms on sharing is one of the items of interest.  

Standard comparative statics on the equilibrium conditions, (1) and (2) yield the following 

proposition.  
 

Proposition 1. In the specific sharing game, the feasibility of sharing increases with (i) an 

increase in 𝛼 and η, (ii) a decrease in 𝑐!,  𝑐!, or (iii) a decrease in 𝑊 if 𝑉(𝑒!, 𝑟!) >
!!
!!
𝑐!. The effects 

of 𝑒!,   𝑒!, 𝑟! and 𝑟! are ambiguous.  

 

The proposition has several implications for our empirical estimation. First, an increase in 𝛼, the 

researcher’s belief that the game will continue beyond the current period, increases the likelihood of 

sharing. It is this result which allows us to relate α to respondent career stage in the survey . For example, 

researchers within their first six years in academia (i.e., untenured) are clearly at risk of exiting academia 

(or of exiting from an academic research position), as are those near retirement dates. Second, a decrease 

in the cost of sharing,  𝑐!, decreases researcher 𝑖's single period gain from not sharing, thus increasing the 

likelihood she will share. As we discuss in Section 3.1, under an assumption of economies of scale in 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 An appendix available from the authors derives comparative statics similar to those in Proposition 1 in the context 
of a repeated simultaneous move model where the period game is repeated an uncertain number of periods. 
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research teams, this result implies that researchers with larger teams face lower costs of preparing 

requested information and, thus, would be more likely to share, all else equal. Third, under the 

assumption stated in the proposition, a decrease in the size of the prize (𝑊) increases the likelihood of 

sharing. A decrease in 𝑊 decreases the single period gain to not sharing, but it also decreases the loss 

from future punishment for not sharing. The condition in the proposition ensures the former effect 

dominates. In the special case of 𝛿! = 𝛿!, the condition simply says that the value of the material gained 

in the exchange exceeds the researcher's cost of supplying his own material. Fourth, in a community with 

high reputational cost or punishment for not reciprocating (corresponding to a high η), sharing is more 

likely to occur. The remaining results are ambiguous since any of these changes increase one researcher’s 

incentive to share while decreasing the other’s incentive. 

2.2  General Sharing 

In this section, we consider the decision to share research findings in an open forum before 

publication, for example, by presenting intermediate results at a conference or posting them on a website. 

Again researchers face conflicting incentives. Sharing such information allows the researcher to gain 

feedback, but as in specific sharing, if sharing provides useful insights for others it may increase the 

probability that someone else beats her to completely solving the problem. Unlike specific sharing, 

general sharing also has the benefit of announcing her progress to the public which will afford credit for 

that work, but only if others acknowledge it. Our interest is in the conditions under which preliminary 

work is shared with a general audience and appropriately acknowledged as an equilibrium outcome. 

We consider a simplified sharing decision of a single researcher, researcher 1, who is deciding 

whether to share her results with the entire community in an effort to get credit 𝜎𝑊 for her progress. We 

assume the community includes M researchers trying to solve the same problem where M ≥ 2. None of 

the researchers has completely solved the problem; if any has, the game ends. As before, 𝑊 is the prize 

for the solution. We also represent the portion of the problem researcher 1 has solved as 𝜎 ∈ (0,1). For 

simplicity, we abstract from the cost of preparing for the presentation.4  

Because in general sharing there is uncertainty about who will be in the audience, we let 

𝛾 ∈ (0,1) be the probability that a randomly chosen researcher has solved a different part of the problem, 

and call that researcher a complementor. Then 𝜆 = 1 − (1 − 𝛾)!!! is the probability that at least one of 

the 𝑀 − 1 researchers is a complementor. Sharing with complementors has two effects: it allows for 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Since she has to bear preparation costs for publication once she solves the entire puzzle, it is not clear there is a 
true opportunity cost associated with presenting preliminary results. This is in contrast to specific sharing where the 
researcher may share information that is not required to be shared for publication (e.g., data/material samples for 
shipment or instructions for database use). Including a cost to reflect travel or other expenses not related to publica-
tion would make presentation less likely all else equal.   
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feedback, which improves the presenting scientist’s solution to the problem, adding value 𝜏 to W,5 but it  

reduces her probability of winning the prize by 𝛿. We denote researcher 1's probability of winning as 

𝑥 ∈ (0,1) if she does not share (or shares and there are no complementors) and (𝑥 − 𝛿) ∈ (0,1) if she 

shares and the audience includes at least one complementor. If she shares with an audience without any 

complementors, she gets neither feedback nor reduces her probability of winning.6  

The game is represented in extensive form by Figure 1. In stage zero nature chooses the 

probability that there is a complementor, 𝛾, and in stage one, researcher 1 chooses between sharing her 

results by presenting (𝑃) to the community or not (𝑁𝑃). If she shares, she makes the 𝑀 − 1 

researchers aware of her progress. Researchers obtain information from researcher 1, and all (including 

researcher 1) continue working on the problem. 

In stage two, nature decides which researcher is first to completely solve the problem. If the 

winner is researcher 1, the game ends. If the winner is another researcher, he decides whether to 

acknowledge 1's work (𝐴) or not acknowledge it (𝑁𝐴).7 If he acknowledges her work, he earns partial 

credit, 1 − 𝜎 𝑊, while he earns full credit, W, if he does not acknowledge it. But with probability 𝑣, 

one of 𝑀 − 2 researchers, observing both the winner's work and researcher 1's, will verify that the 

winner has used researcher 1's idea without acknowledging it. In this case, the winner suffers a loss of 

reputation 𝑅!  and earns no credit. We denote researcher 1's belief that a randomly chosen researcher 

will provide verification as 𝜌 ∈ (0,1) and assume that the 𝑀 researchers share this belief. Then we can 

write each researcher's belief that at least one of the 𝑀 − 2 (other than researcher 1 and the winner) 

verifies as 𝑣 = 1 − (1 − 𝜌)!!!. 

Consider the winner's decision. For acknowledgement to be worthwhile for the winner, he has to 

expect the likelihood that another researcher will verify the originality of his work to be sufficiently high. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 An alternative approach would be to allow feedback to increase the probability of solving the problem from x to 
(1+𝜏). We chose the simpler approach since they both yield the same qualitative results. Note also that 
non-complementors may provide feedback as well. For simplicity, however, we normalize their feedback to zero 
since complementors' feedback is likely to be more pertinent. Our specification also treats feedback as received 
privately. For instance, a colleague may listen to the presentation by researcher 1 or see her paper posted on a web-
site, and then provide feedback through email or one-on-one discussion. In that case, the feedback would not benefit 
others in the audience. Nevertheless, one may think that feedback can also be received in the public setting and thus 
known by all the players. Allowing feedback to benefit both researcher 1 and the other player, however, does not 
change our results. 
6 Even without complementors, researcher 1 does not necessarily win with certainty because she still faces compe-
tition from non-complementors. Although non-complementors	
  presumably do not have more valuable information 
than researcher 1, they may still solve the problem first and win because scientific discovery is highly uncertain and 
there might be alternative research approaches.	
  
7 Thus we have implicitly assumed that researcher 1 cannot, herself, force those with whom she shares to 
acknowledge her work. This seems appropriate for work that is neither published nor patented. Even for results 
codified by publication or patent, one can argue that an external mechanism is involved. 
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The decision also depends on the reputational loss 𝑅!  if misappropriation is verified, as well as the size 

of the prize and the extent to which researcher 1 solved the problem; that is, acknowledgement is 

worthwhile for the winner if 

 𝑣 > !"
!!!!

. (3) 

Since 𝑣 is a function of the number of researchers working on the same problem, this condition can be 

rewritten as 

 𝑀 >
!" !! !"

!!!

!" !!!
+ 2. (4) 

Thus, the model implies that if only two researchers are working on the problem, the winner will never 

acknowledge researcher 1's work. Since credit for her progress will not be forthcoming, the only reason 

that researcher 1 would share is for feedback. In fact, we will find that unless there is sufficient feedback, 

researcher 1 will not share.8  

In making her sharing decision, researcher 1 compares her expected utility from sharing and not 

sharing  

 𝑈! − 𝑈!" = (1 − 𝑥)𝜎𝑊𝐶 + 𝜆𝜏 + 𝜆(𝜎𝐶 − 1)𝛿𝑊 (5) 

 where 𝐶 = Pr(𝐴) + 𝑣Pr(𝑁𝐴) is the probability that she will receive credit regardless of whether or not 

the winner acknowledges, 

Pr(𝐴) ≡ 1        if   4 holds
0        otherwise,

 

and Pr(𝑁𝐴) = 1 − Pr(𝐴). The first term on the right hand side of (5) is the announcement effect and 

reflects the credit she hopes to get from sharing. The second reflects feedback from complementors, while 

the third reflects the fact that their presence in the audience increases their chances of winning. Thus for 

sharing to dominate not sharing, the effects of announcement and feedback must outweigh the negative 

impact from competing with complementors.  

Together the conditions in (4) and (5) allow us to completely characterize the potential pure 

strategy equilibria of the game in terms of 𝑣 = !"
!!!!

 and 𝐶 = ! !"!!
!!! !!" !"

.   For given values of the 

parameters M, ρ, σ, W, and R, the unique equilbrium involves presentation and acknowledgement for 

𝑣 > 𝑣 and 𝐶 > 𝐶; presentation without acknowledgement for 𝑣 < 𝑣 and 𝐶 > 𝐶; no presentation 

despite the willingness of potential audience members to acknowledge for 𝑣 > 𝑣 and 𝐶 < 𝐶; and finally, 

no willingness to present or acknowledge in equilibrium for 𝑣 < 𝑣 and 𝐶   < 𝐶. Comparative statics 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Note that when M=2, we have C=0 and thus 𝑈! − 𝑈!" = 𝜆(𝜏 − 𝛿𝑊). This means sharing occurs only if 
𝜏 > 𝛿𝑊. 
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with respect to the parameters yield the following results. 

 

Proposition 2 (i) The range of parameters for which acknowledgement (𝐴) is an equilibrium 

strategy is increasing in 𝑀, 𝜌, 𝑅!  and decreasing in 𝑊  𝑎𝑛𝑑  𝜎.  

 (ii) The range of parameters for which 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  (𝑃) is an equilibrium strategy for 

researcher 1 is increasing in 𝜏, 𝜌, and 𝑅!  and decreasing in 𝑊, 𝑥 and 𝛿. It is increasing in 𝑀 for 

𝜏 > 𝛿𝑊. The effect of 𝜎 is ambiguous.  

 

The results for 𝑀 and 𝜌 in Proposition 2(i) follow from the fact that an increase in either of 

them increases the likelihood of verification. An increase in 𝑅!  increases the cost to the winner from 

misappropriation should it be discovered. On the other hand, an increase in 𝑒𝑖𝑡ℎ𝑒𝑟  𝑊  𝑜𝑟  𝜎 increases the 

gain to the winner should misappropriation escape verification  

The results in (ii) provide several useful insights for the empirical analysis. First, an increase in 

feedback, 𝜏, increases the benefit of sharing. This result allows us to relate team size with general 

sharing: researchers in a larger team need less external feedback, thus they are less likely to generally 

share. Second, increases in the size of prize 𝑊 increases the potential loss from sharing. Additionally, an 

increase in the size of the audience, 𝑀, increases the likelihood of having at least one competing 

complementor in the audience which increases both benefit associated with feedback and the risk of 

losing the competition. If 𝜏 > 𝛿𝑊, the feedback effect dominates so that sharing in equilibrium is more 

likely. Finally, in a community with a higher likelihood for verification and punishment for 

misappropriation (corresponding to a high 𝜌 and 𝑅), risk of sharing is lower and thus sharing is more 

likely to occur.  

 

3  Econometric Analysis 

To examine the extent to which sharing differs in these two contexts, we exploit a unique survey 

of bio-scientists' decisions to share information or not. The researchers are employed in a university or a 

public research organization in Germany or the United Kingdom. Industry researchers are excluded since 

their sharing is related to motives not found among public sector researchers (see, e.g., Haeussler, 2011). 

We exclude questionnaires from researchers who were older than 65 years. The final sample has 1173 

observations that met our criteria (approximately 21% are employed in the United Kingdom). In the 

Appendix we provide details of the survey. 

Of greatest importance to the present study is a series of four questions regarding a researcher's 

decision to share information (Table 1). Questions 1 and 2 cover specific sharing, and questions 3 and 4 

address general sharing. Responses are measured on five-point Likert scales ranging from disagree 
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strongly to agree strongly. Responses are coded so that higher scores imply a greater likelihood of sharing. 

A strongly disagree response for questions 1, 2 or 4 is coded as a 5 while strongly agree response is coded 

as a 1. For question 3 strongly disagree is coded as a 1 and strongly agree as a 5. 

Summary statistics are in Tables 2 and 3. The correlations among the sharing question responses 

in Table 3 are positive and significantly different from zero at a 1% level, and the largest correlation is 

less than 0.5. Together the correlations suggest that the four questions address distinct issues within and 

across types of sharing. 

We use an ordered logit model to examine how responses to the four sharing questions relate to a 

set of independent variables. A panel is created using the four questions and we use interaction terms (see 

below) to estimate a single econometric model explaining Likert scores for the general and specific 

sharing questions. That is, the first person in the sample provides the first four observations, the second 

person provides observations 5 through 8, etc. Since each respondent can appear in the data up to four 

times, we use cluster standard errors to account for within individual correlations across the disturbances. 

To explore econometrically differences between general and specific sharing, the same regressors 

are used for both. However, as one might expect from the theory, the marginal effects on specific and 

general sharing may be quite different. To deal with different marginal effects by type of sharing we 

create two binary variables: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 is equal to one if the question relates to specific sharing questions 

1 or 2 in Table 1 (zero, otherwise), and 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 is equal to one if the question relates to general sharing 

questions 3 or 4 in Table 1 (zero, otherwise). Each independent variables appears as an interaction with 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 and as an interaction with 𝐺𝑒𝑛𝑒𝑟𝑎𝑙. That is, the model is 

𝑌! = 𝛽!

!

!!!

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐! ∙ 𝑋!" +    𝛾!

!

!!!

𝐺𝑒𝑛𝑒𝑟𝑎𝑙! ∙ 𝑋!" +   𝜖! . 

Marginal effects for the types of sharing are then immediately obtained as the coefficients of the 

interactions; that is, if the observation relates to specific sharing then the marginal effects are given by the 

β’s  whereas the γ’s  are the marginal effects for general sharing. Alternatively, we could have relied on 

separate regressions for specific and general sharing. However, a single estimating equation (rather than 

separate regressions for the two types of sharing, or for each question) allows us to use cluster standard 

errors to capture the information contained in the cross question disturbances for each respondent.9 

3.1  Regressors 

We have four sets of key regressors and an additional set of control variables. Among the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 An alternative is seemingly unrelated regressions (SUR). Table 7 includes the SUR results as a robustness check. 
Comparing Table 7 to the base model in Table 4 suggests that the results are nearly identical.  
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regressors of interest some are expected to have similar effects on both sharing decisions (e.g., 

competition); however, regressors related to the expectation of continued interaction or the value of 

feedback are expected to differ in their effects. 

3.1.1  The Size of the Prize and Competition 

Both types of sharing are expected to vary with the size of the prize. We do not directly observe 

the prize, but it is reasonable to expect competition to be greater for prizes of higher value. In the survey, 

respondents are asked to rate on a five-point Likert scale how tough the competition is in their field. 

Competition is expected to be negatively related to specific sharing.10 All else equal, we would expect the 

same relationship for general sharing. However, Competition may be positively correlated with the 

number of competing researchers, 𝑀, and this will conflate the effect of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 on general 

sharing. Proposition 2 suggests that an increase in 𝑀 has an ambiguous effect on sharing. When 

presentation is highly risky in terms of increasing other researchers' odds of winning, an increase in 𝑀 

makes sharing less likely. In this case, a negative relation between 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 and general sharing is 

expected. However, when this risk is outweighed by the value of feedback and an increase in the 

likelihood of verification (see Proposition 2), the overall effect of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 on general sharing can 

be positive.  

A potential concern with Competition is that a respondent’s view of competition could reflect the 

level of sharing in the respective field. This raises the issue of endogeneity in some settings; however, in 

our case, each individual is such a small part of the field that reverse causality is not a concern. Further, 

from our interviews, scientists’ definitions of competition reflected issues of funding, publication rates, 

and competition for students, rather than information sharing. The Appendix provides further details. 

As a measure of the commercial value of the prize we include the importance that respondents 

attach to patents for their reputation among peers. 𝑃𝑎𝑡𝑒𝑛𝑡𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 is measured on a five-point scale 

where larger values indicate greater esteem from patents. As measures of prizes of scientific value, 

respondents were also asked to rate on a five-point Likert scale the importance for their reputation among 

peers of the number of articles published in peer reviewed journals (𝑃𝑢𝑏𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛). Our theoretical 

models do not distinguish between prizes of commercial value and those that reinforce scientific 

reputation since both can be relevant. We expect 𝑃𝑢𝑏𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑃𝑎𝑡𝑒𝑛𝑡𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 to be 

negatively associated with both types of sharing. 

Finally, respondents were asked to rate, on a five-point Likert scale, to what extent they agree that 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Blumenthal et al. (2006) uses a similar question but considers only a four-point scale. Notably the percentage of 
respondents who answer 4 or 5 in our survey is 71%, which is identical to the percent answering 4 in theirs. Hong 
and Walsh (2009) use Hagstrom’s (1974) specification of competition in order to examine changes in secrecy over 
time.  
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the first to find new research results is highly esteemed among peers. Higher values of 𝐹𝑖𝑟𝑠𝑡𝐸𝑠𝑡𝑒𝑒𝑚𝑒𝑑 

indicate greater esteem and we expect it to have a negative effect on both general and specific sharing. 

3.1.2  The Expectation of Continuation in the Specific Sharing Game 

In our model of specific sharing, the feasibility of sharing as a subgame perfect equilibrium is 

increasing in α, the probability of the game having a second period in which researcher 2 has information 

of value to researcher 1. Intuitively, one would expect this probability to be lower when one or more of 

the researchers is nearing retirement. Thus we include the age of the respondent, 𝐴𝑔𝑒. In the general 

sharing model there is no prediction regarding the effects of 𝛼 and, thus, no expectation on the effects of 

𝐴𝑔𝑒. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 is an indicator variable equal to one if the respondent is a professor (and hence has 

tenure) and zero if the rank is less than professor. At the time of the survey, in the German academic 

system, which covers the majority of our respondents, faculty who had a lower rank than professor were 

almost always untenured. While untenured faculty may have a longer life cycle horizon to receive future 

reciprocity, they may also have a horizon defined by the date they are considered for tenure. The time 

horizon is expected to be shorter when at least one of the researchers is untenured compared to both 

researchers being tenured. Hence, the expected effect of 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 is positive in specific sharing. 

An argument can be made that, all else equal, the size of the prize from research is higher for 

untenured faculty since the awarding of tenure is a part of the prize. This aspect of rank should affect  

specific and general sharing in the same way. In the case of specific sharing, this effect should reinforce 

the positive effect of career horizon for 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟; and in general sharing, it could lead to a positive 

coefficient for 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟.  

3.1.3  Size of the Respondent's Research Group 

We include 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒, which is the number of researchers with an academic degree who 

currently work in the respondent's research group, as a regressor. 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 clearly reflects a number of 

aspects of the research production process. By definition the more researchers in a lab, the larger is a 

researcher’s built-in network of colleagues who can provide feedback on projects. Thus, consistent with 

Guimera et al. (2005) researchers in small teams will be more dependent on formal presentations as a 

feedback mechanism (a higher value of 𝜏).   This suggests a negative effect of 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 on general 

sharing.  

𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 is also well known to reflect scale economies resulting from specialization and 

effective division of labor, with optimal team size determined by balancing scale economies against 

coordination costs (Becker and Murphy, 1992). It is not surprising, then, to find that larger teams appear 

to be more productive (Wuchty et al., 2007; Adams et al., 2005), which, all else equal, yields lower costs. 

One of the factors influencing specific sharing in our model is the cost of responding to the requestion 

and prior empirical studies this cost to be a major reason for denying requests (Campbell et al., 2002 and 
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Walsh et al., 2007). This aspect of 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 suggests a negative coefficient in the context of specific 

sharing. However, we cannot rule out a positive coefficient, since more productive teams are better able 

to exploit information coming into the lab, an unobservable factor which in the theory has an ambiguous 

effect. 

3.1.4  Scientific Norms for Openness 

The greater respondent's beliefs that the norms of science operate in their field the greater is the 

expected level of sharing in both contexts. Respondents were asked to rate, on a five-point Likert scale, to 

what extent they agree that open exchange of information is usually practiced among researchers. Higher 

values of 𝑂𝑝𝑒𝑛𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 indicate that more openness is practiced.  

The specific sharing game includes a reputation loss, 𝑅!, when sharing is not reciprocated. The 

general sharing game includes the possibility of misappropriation and reputational loss, 𝑅! ,  if 

misapropriation is verified by researchers in the open forum. These aspects of general sharing should 

reinforce the expected positive relationship of 𝑂𝑝𝑒𝑛𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 and general sharing. Respondents were 

also asked on a five-point Likert scale the extent to which they believe someone who exploits the ideas of 

others against their will is bound to lose reputation. Higher values of 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝐿𝑜𝑠𝑒 reflect a stronger 

belief that punishment takes place and higher values are expected to be positively associated with general 

sharing. 

3.1.5 Control Variables 

We include the respondent's prior success at publishing and patenting as controls. 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

is the total number of publications as reported by the respondent. Walsh et al. (2007) report that among 

academic bio-scientists the number of publications is positively associated with the likelihood that a 

request for information is denied. As a measure of prior success in patenting, we use the number of 

technically unique patent applications (𝑃𝑎𝑡𝑒𝑛𝑡𝑠) which the respondent claims list them as an inventor. 

𝑃𝑎𝑡𝑒𝑛𝑡𝑠 are associated with the commercial orientation of the researcher which we expect to be 

negatively associated with both types of sharing. 

Respondents also were asked to rate, on a five-point Likert scale, how strongly they pursue basic 

research. Higher values of 𝐵𝑎𝑠𝑖𝑐 indicate a greater concentration on basic research, and our prior is that 

higher values are associated with greater sharing in both games. 𝑂𝑤𝑛𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ is the percentage of the 

respondent's time that is spent on own research. This is a measure of how engaged the respondent is in 

research rather than other activities such as administration, teaching or grant writing; we do not have a 

prior about the effect of 𝑂𝑤𝑛𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ on sharing. 

We include two regressors in addition to 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 to capture what might be referred to as 

academic entrepreneurship. 𝐶𝑜𝑛𝑠𝑢𝑙𝑡 is the percentage of the respondent's time that is spent “advising 

companies”. Using a measure for business activity (ranging from being involved in writing a business 
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plan to founding a firm), Cohen and Walsh (2008) report that academic researchers involved in business 

activities show a lower willingness to fulfill an information request than researchers never involved in any 

such activity. They might be more concerned about protecting the potential to commercialize research 

findings or they might use the results in their consulting activities. Finally, 𝐹𝑎𝑚𝑖𝑙𝑦𝐸𝑛𝑡 is an indicator 

variable equal to one if a parent or sibling of the respondent is a founder of a firm. Researchers with 

family members who are entrepreneurs may be more cognizant of the potential commercial value of their 

discoveries and hence less likely to share. Haeussler (2011) finds that researchers with an entrepreneur in 

their family are less likely to fulfill a request for information. 𝐶𝑜𝑛𝑠𝑢𝑙𝑡 and 𝐹𝑎𝑚𝑖𝑙𝑦𝐸𝑛𝑡 are expected to 

have negative effects on both types of sharing. 

We include 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒, the number of full time employees who currently report directly to 

the respondent. In experimental settings Charness et al. (2007) and Song (2008) find that cooperation is 

less likely in repeated Prisoner's Dilemma games when individuals view themselves as representing 

members of a group. Thus we expect higher values of 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 to be associated with less sharing in 

the specific sharing game. We have no expectation regarding its sign for general sharing. 

Other control variables include 𝑀𝑎𝑟𝑟𝑖𝑒𝑑 which is an indicator variable equal to one if the 

respondent is married and 𝑀𝑎𝑙𝑒 which is an indicator variable equal to one if the respondent is male.  

Respondents were asked to indicate in which of 13 subfields of biological sciences they worked 

and field fixed effects are included. We also include fixed effects for the four questions. 

3.2  Results and Discussion 

The coefficients of the variables 𝑂𝑤𝑛𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ, 𝐶𝑜𝑛𝑠𝑢𝑙𝑡, 𝐹𝑎𝑚𝑖𝑙𝑦𝐸𝑛𝑡, 𝑀𝑎𝑟𝑟𝑖𝑒𝑑 and the 

indicator for a UK researcher (𝑈𝐾) are neither individually nor jointly statistically different from zero. 

Since these regressors are included based on our priors rather than the theoretical models we drop them 

from the regression and estimate a more parsimonious model; results are in Table 4. For the sake of 

brevity we do not present the results for the full model (i.e., the one that also includes 𝑂𝑤𝑛𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ, 

𝐶𝑜𝑛𝑠𝑢𝑙𝑡, 𝐹𝑎𝑚𝑖𝑙𝑦𝐸𝑛𝑡, 𝑀𝑎𝑟𝑟𝑖𝑒𝑑 and 𝑈𝐾) which are very similar to those of the parsimonious model. 

Results in terms of odds ratios for the specific sharing coefficients are in Panel A of Table 4, and 

the general sharing results are in Panel B. An odds ratio greater than one indicates a positive effect of the 

regressor on the level of sharing while an odds ratio less than one indicates a negative effect. Recall from 

above that interacting each of the regressors with the 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 and 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 indicator variables allows 

us to immediately obtain the specific and general coefficients, and by estimating the coefficients jointly 

we are able to account for cross question correlations. 

3.2.1  Specific Sharing 

In the specific sharing results (Panel A) two of the variables associated with the size of the prize, 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 and 𝑃𝑎𝑡𝑒𝑛𝑡𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛, have the expected negative signs (odds ratio less than one) and 
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are significantly different from zero. 𝐹𝑖𝑟𝑠𝑡𝐸𝑠𝑡𝑒𝑒𝑚𝑒𝑑 has the expected negative sign and 

𝑃𝑢𝑏𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 has an unexpected positive sign, but neither is significantly different from zero. 

The time horizon is captured by 𝐴𝑔𝑒 and 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 has the predicted positive 

sign and is significantly different from zero, thus supporting Proposition 1. 𝐴𝑔𝑒, however, is 

insignificant which may be due to having few observations on researchers close to the end of their career. 

In our sample the average age of respondents is 46 and only 15% of respondents are older than 55 and 6% 

are older than 60. 

Consistent with the comparative static effect of cost, 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 has a positive and significant 

association with specific sharing.11 

𝑂𝑝𝑒𝑛𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒, the extent to which the respondent believes the norm of open exchange is 

practiced, has the expected positive sign and it is significantly different from zero. The likelihood of 

researchers' specific sharing increases when the community is perceived to follow the norm of 

communalism. 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝐿𝑜𝑠𝑒 has an unexpected negative, though insignificant, sign. 

With respect to control variables, the coefficient of 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is not significantly different 

from zero, and the coefficient of 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 is negative (as expected) but it is also not significant. 𝐵𝑎𝑠𝑖𝑐 

is positive and significant, as expected. The coefficient of 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 is significant and has the 

anticipated negative sign. 

Robustness checks were conducted, and the results remain similar to the base case. First, we 

included the square of the size of the team, 𝑇𝑒𝑎𝑚𝑆𝑞. The literature on the effects of team size on team 

productivity has generally found positive effects of increasing the size of teams when the team is small. 

Some have found a moderating effect as teams get larger (Diaz-Frances et al., 1995) while others have 

found the effect to remain linear (Cohen, 1981; Kretschmer, 1985). The results of including the squared 

term for specific sharing are in Table 5, Panel A. 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 and 𝑇𝑒𝑎𝑚𝑆𝑞 are not individually 

significantly different from zero, but they are jointly significant (p-value = 0.036). The other results are 

very similar to the base case. 

Second, we dropped two sharing questions (question 4, 𝑊𝑖𝑡ℎℎ𝑜𝑙𝑑 and question 1, 𝑁𝑜𝑡𝑃𝑎𝑠𝑠) 

and results are in Table 6. Arguably, the dropped questions may not be clear measures of the type of 

sharing we model. However, the specific sharing results are little changed. The only noteworthy results is 

the non-significance of 𝐵𝑎𝑠𝑖𝑐 and 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒. 

Third, both 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 and 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 are highly skewed. As a robustness check we dropped 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 In addition to TeamSize, the quality of the individual researcher and the team might influence the level of sharing. 
In the empirical models, we include the number of Publications and OwnResearch (i.e., the percentage of the re-
spondent’s time that is spent on own research) as controls for quality. 
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observations if either regressor has a value greater than 99; 44 observations are dropped. The specific 

sharing coefficients for 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 and 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 are no longer significant. This suggests that it is 

only in the very largest teams and/or when individuals are responsible for a large number of other 

researchers that there are significant effects on specific sharing. Other results are little changed and 

therefore not presented in detail. 

Fourth, 𝐴𝑔𝑒 and 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 are not significant in the base model (Table 4), and they are 

highly correlated (the simple correlation is 0.57). We replaced 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 with the ratio of 

publications to age. The new results are very similar to those reported in Table 4 and therefore not 

presented in detail.  

Lastly, as noted earlier we estimated our models using a seemingly unrelated regression approach. 

Results are in Table 7 and they are nearly identical to the ones presented in Table 4. 

3.2.2  General Sharing 

The general sharing coefficients are in Panel B of Table 4. The coefficient of 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 is 

negative and significant. This is consistent with the effect of 𝑊, the size of the prize, outweighing any 

positive effects of 𝑀. 𝑃𝑎𝑡𝑒𝑛𝑡𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 has the expected negative, significant sign associated with 

the value of the prize. On the other hand, 𝑃𝑢𝑏𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 has an unexpected positive coefficient 

significant at the 10% level. The positive effect may reflect the fact that when publications are important 

for reputation, general sharing provides the researcher with the benefit of announcing her progress to the 

public, and as such presentation is an important communication mechanism. 𝑃𝑢𝑏𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 likely 

reflects this as well as the value of the prize. 𝐹𝑖𝑟𝑠𝑡𝐸𝑠𝑡𝑒𝑒𝑚𝑒𝑑 has a statistically insignificant sign. 

We do not have a prior on the effects of 𝐴𝑔𝑒 and it is not significantly different from zero. 

Faculty without tenure are expected to view tenure as a part of the prize so that 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 may be 

related to the size of the prize. As expected it has a positive coefficient, but it is not significant. 

The need for feedback is relevant for general sharing and members of larger teams, all else equal, 

are not expected to rely as much on external feedback as are members of smaller teams. As predicted, 

𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 has a negative and significant effect on general sharing. 

𝑂𝑝𝑒𝑛𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 has the anticipated positive and significant coefficient. 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝐿𝑜𝑠𝑒 has a 

counterintuitive negative sign, but it is not significantly different from zero.12 

With respect to the control variables, those who conduct more basic research are more likely to 

generally share. 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 and 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 have expected negative and significant coefficients. 

Researchers with more publications are more likely to generally share, and men share less than women.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 If misappropriation is strongly sanctioned in a community, misconduct is rarely seen. If such rare events have not 
been observed by our interviewees, they might rate 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝐿𝑜𝑠𝑒 at a low level. This may explain the lack of effect. 
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As was the case with specific sharing, we did various robustness checks. In Panel B of Table 5 

are results when 𝑇𝑒𝑎𝑚𝑆𝑞 is included. 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 and 𝑇𝑒𝑎𝑚𝑆𝑞 are jointly significantly different from 

zero (p-value=0.000); the other results are very similar to the base model. In Panel B of Table 6 are 

results after dropping 𝑊𝑖𝑡ℎ𝐻𝑜𝑙𝑑 and 𝑁𝑜𝑡𝑃𝑎𝑠𝑠. The only notable differences is that 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 is 

no longer significantly different from zero; its p-value, however, is 0.102. When we drop observations for 

which either 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 or 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 is greater than 99 we find that 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 is no longer 

significant suggesting that it is only when respondents are responsible for large numbers of other 

researchers that there is a significant effect on general sharing. However, 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 continues to be 

significant with an odds ratio less than one. Other results are little changed, so we do not present the 

detailed results. When 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is replaced by the ratio of publications to age, the results are very 

similar to those Table 4. Finally, the SUR results in Table 7 are nearly identical to those in Table 4. 

3.3  Are the Models Different? 

The main purpose of our empirical analysis is to test whether the two forms of sharing are 

different. A comparison of Panels A and B of Table 4 suggests that it is indeed the case. We tested for 

significant differences in the marginal effects for each of the regressors. Attention is confined only to 

regressors that are significantly different from zero in at least one of the panels in Table 4. For these 

variables, there are only three regressors with coefficients that are not significantly different across the 

two types of sharing: 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒 and 𝐵𝑎𝑠𝑖𝑐 (p-values equal to 0.529, 0.271 and 

0.688, respectively). The effect of competition is expected as, theoretically, competition has similar 

effects in both specific and general settings.  

In other respects, however, the empirical results reflect factors which differ in the two contexts.  

These differences are borne out in the results reported in 3.2.1 and 3.2.2. In the specific sharing game, 

𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 is significant and positive which is consistent with the fact that specific sharing can incur the 

cost of answering information requests and larger teams have smaller costs, but its effect in general 

sharing is quite different; in fact it is negative and significantly different from zero (the p-value in a test of 

their difference is 0.027). This is consistent with the fact that general sharing is a common approach for 

external feedback and larger teams have less need for external feedback. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟, which is our 

variable reflecting tenure, is positively related to specific, but it is not related to general sharing. This 

latter result is expected since repetition is not necessary for general sharing to take place. 

Two variables are positive and significantly related to sharing in both models, but marginal 

impacts are statistically significantly higher in general sharing than specific. These are 

𝑂𝑝𝑒𝑛𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒  (p-value in the test of differences is 0.004), which reflects the environment for public 

sharing, and 𝑃𝑎𝑡𝑒𝑛𝑡𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (p-value in the test of differences is 0.010), which reflects the extent to 

which the respondent's reputation is affected by patents. When patents are considered important for one's 
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reputation, presenting intermediate research results in the public setting can compromise patent protection, 

while it is not necessary the case in private sharing.13 In terms of 𝑂𝑝𝑒𝑛𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒, the more open the 

exchange in the community, the higher the likelihood of verification for misconduct.14 

Above differences are consistent with our argument that a researcher can face different tradeoffs 

in the two contexts. In specific sharing, respondents share information privately, thus the potential benefit 

of public recognition and feedback from audience does not come with specific sharing. Instead, an 

important driver of sharing is the possibility of future reciprocity. This implies that specific sharing 

occurs in equilibrium only when the researchers have sufficiently long expected career horizons to allow 

for future sharing. This future interaction is not a necessary condition for general sharing. Thus, the 

variable (Professor) that relates to career horizon has a greater effect on specific sharing than general 

sharing. In contrast, in general sharing, the potential benefit is credit for the results presented and 

feedback from the audience. The downside is, because the results are unknown until presentation, patents 

can be compromised if the result is patentable. Further, the presenter’s credit may not be acknowledged. 

Thus, variables that relate to the risk of losing credit due to misappropriation (Open Exchange) and the 

importance of patenting (PatentReputation) have a greater effect on general sharing than on specific 

sharing. Finally, specific sharing may bear a cost of preparation that the respondent would not incur 

absent the request. Thus lower costs of sharing for those in larger teams promotes specific sharing, but not  

general sharing. In fact, a larger team is less likely to engage in general sharing during research process 

because it has a greater built-in team for feedback. 

 

4  Concluding Remarks 

Information-sharing during the research process provides the basis for cumulative knowledge 

production and thus for scientific progress. While it is desirable from a communal point of view, 

researchers endogenously choose whether or not to share. More importantly, we find that researchers’ 

decisions are context specific. For example, researchers in large labs may be more receptive to specific 

requests for data than those in small labs because the costs of sharing are lower, while they may be less 

likely, ceteris paribus, to share generally because they have a larger network within the lab for feedback.  

In terms of policies, any policy increasing competitive pressures will reduce sharing, ceteris 

paribus. Thus prizes or rankings (e.g., Thomson’s Science Citation Index) may encourage entry into 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 Any public disclosure jeopardizes patent rights in first-to-file-patent systems where the first inventor to file a 
patent application is granted the patent. The United States' first-to-invent system is one of the few exceptions to this, 
in which case a provisional application provides some degree of protection.	
  
14 In terms of other control variables, we find that Male does not have a statistically significant effect on specific 
sharing whereas it has a negative, significant effect on general sharing.	
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competitions, but they come with the unintended consequence of decreasing sharing during the research 

process. In contrast, requirements by funding agencies (among them the European Research Council, 

German Research Foundation, National Science Foundation) to provide an appropriate and adequate 

data-sharing plan make sharing more likely. In terms of our specific sharing game, such a requirement 

strengthens the norm of returning favors (i.e., the impact of 𝑅!), where in this case, researchers are 

expected to provide conditions under which they would share the data obtained with public funding.  

Another implication is that platforms which encourage general sharing should also be cognizant 

of the importance of verification that results are novel to the author. Although journals penalize 

plagiarism in principle, their policies are often lax. A counterexample is the journal Nature which has a 

strict policy to support verification and encourages readers "who encounter refusal by the authors to 

comply with these policies should contact the chief editor" (Nature, 2012). Journals could also provide a 

platform to publicize instances of fraud as is done by the German Laborjournal in the life sciences. Public 

attention clearly helps to promote detecting plagiarism. The “GuttenPlag Wiki” was started as an online 

Wiki in Germany in 2011 to detect with the help of many volunteers instances of plagiarisms in doctoral 

theses with many “Plags” following.  

Several limitations of the analysis suggest useful directions for research in this area. First, we 

made a number of theoretical simplifications. For example, for general sharing we assumed that the 

researcher's decision was whether to present to the entire community as would be the case for generally 

circulated working papers, presentations at conferences or where papers are posted on the internet. We 

did not examine more targeted sharing or the stage at which one might want to share information. 

Endogenizing the feedback decision and including the possibility of collaboration are also interesting but 

nontrivial problems worth pursuit. Moreover, we did not consider presentation of intermediate results to 

discourage rivals from continuing research in the area, but consider this as fruitful path for future 

research. 

Second, there is a widely held belief that sharing information is always socially beneficial. In 

both of our models, while we take into account the fact that the sharer increases the chances of other 

researchers winning the prize, it does not affect the aggregate probability that the problem is solved. Such 

considerations are more complex, but nonetheless quite important to pursue.  

Third, while our empirical analysis builds on cross-sectional data, a longitudinal dataset would 

allow one to track the career of a scientist over time and to track various cohorts of researchers. 

Finally, caution should be exercised in generalizing the empirical results since they pertain to 

bio-scientists. While the bio-scientific field is a prominent example of a highly competitive field, it is an 

open question as to the extent our empirical findings operate in other scientific fields.  
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Appendix: Survey Design 

We developed and administered a survey in 2007 to bio-scientists in Germany and the UK, two 

leading countries in the bio-sciences. To identify bio-scientists we sampled authors listed in PubMed, the 

most prominent database of bio-scientific and medical abstract citations. We identified 9,074 German and 

8,189 British researchers who had published between 2002 and 2005, using search categories related to 

the bio-scientific field. We then sampled all inventors who filed patents with bio-scientific IPC codes 

with the European Patent Office (EPO) between 2002 and 2005. This yielded 8,265 German and 4,196 

British inventors. All identified researchers were invited to participate in an online questionnaire. A total 

of 2,169 researchers identified through PubMed and 2,452 identified through the EPO Database 

responded; this is a response rate of 13% of publishing researchers and 20% of inventors. For this paper, 

we restricted the sample to academic researchers who received a Ph.D. and were below 66 years. This 

gave a sample of 1,173 observations.   

The search categories used for identifying researchers in the two databases were very broad. We 

concluded from discussions with experts and a small telephone survey with non-respondents that about 30% 

of the scientific authors and about 25% of the inventors in our sample were not in fact involved in 

bio-scientific research. In PubMed, as well as in the European Patent Database, there are no search 

categories or IPC classes that explicitly identify bio-scientific research. In the invitation letter to 

researchers we noted that our target respondents are researchers involved in bio-scientifics. After 

correcting for those who had received an invitation but were not involved in bio-sciences, we ended up 

with a response rate of 17% in the case of publishing researchers and 26% in that of inventors.  

To test for non-response bias, we followed the standard procedure of testing whether the answers 

to our dependent variable of sharing information differ between early and late respondents (see Arm-

strong and Overton 1977). We estimated a series of ordered logit models. To distinguish between the first 

wave and last wave of respondents, we used a quite conservative threshold by comparing the 10% of first 

respondents with the 10% of last respondents, and in another series of tests the 20% of the first with the 

20% of the last respondents. In neither specification was the coefficient of our independent variable (early 

versus late respondent) significant. In addition, we tested whether our early respondents received more 

requests from other researchers to share information. Arguably the (early) respondents might be more 

willing to provide information which would affect our results. However, the coefficient of comparing the 

early and late 10% as well as the early and late 20% of respondents is not significant.  

In preparing the survey we conducted a series of 16 pre-tests with scientists in both Germany and 

the UK who were part of the target population, but were not included in the final sample. As part of this 

process, we went through the questionnaire with the interviewees and asked for their feedback on the 

questions including any additions they would find important. We also placed the questions in the survey 
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in a manner that respondents first had to answer field level questions before asking them about sharing of 

information. Further, in our latest interviews with researchers, we specifically asked about different as-

pects of competition and how scientists would define competition. Scientists defined competition in terms 

of funding, publication rates, and acquiring skilled students. They did not mention the level of sharing as 

an indicator for the level of competition. 

We further computed various correlations to check whether they would give us an indication of 

reverse causality, but did not find any support for such an indication. For example, the correlations be-

tween our measure for competition and our sharing variables are quite low (0.050 for PresentUnpub; 

0.055 for Withhold; 0.078 for NotPass; and 0.065 for ExpectFutInfo). We also correlated our measure for 

competition with the number of requests a researcher received for results researchers outside their organ-

ization. When there is possibility of information exchange influencing the level of competition in a field 

this should also be reflected in the relation between competition and the frequency with which researchers 

approach each other. Our researchers received on average 8.3 requests within the twelve months preced-

ing the survey. The correlation coefficient between competition in the field and received requests is quite 

low (corr=0.045).  

 
 
  


