Appendix for Online Publication

1. Additional Figures & Tables

.05

Figure A1: Child care coverage in selected counties over time

Notes: The figure shows child care coverage over time for individual, selected counties. Each panel depicts a single county.

Figure A2: Changes in child care coverage in selected counties over time

Notes: The figure shows changes in child care coverage over time relative to the previous observation for individual, selected counties. Each panel depicts a single county.

Variable	Ν	Mean	S.D.	Min	Max
Basic dependent variables					
Birth rate of women 15-44 (t)	1,950	44.150	4.409	27.942	63.944
Birth rate of women $15-44$ (t+1)	1,950	44.106	3.984	29.860	65.440
Control variables	,				
Population density	1,950	565.614	690.240	40.720	4286.211
Employment rate (m)	1,950	0.604	0.059	0.406	0.737
GDP per capita (in 1,000)	1,950	28.040	10.812	11.238	86.079
Conservative vote share	1,950	0.392	0.093	0.195	0.750
Female high education share	1,950	0.154	0.062	0.028	0.407
Gov revenue	1,610	383.213	452.072	56.630	5775.025
Gov debt	1,932	0.214	0.279	0.000	3.335
New dwellings	1,950	0.583	0.639	0.008	14.536
Detailed population structure ¹	,				
Other dependent variables					
First births rate, (t)	1,950	15.137	2.437	7.617	23.909
First births rate, $(t+1)$	1,950	14.969	2.159	7.617	22.162
Second births rate, (t)	1,950	12.960	2.343	6.911	20.843
Second births rate, $(t+1)$	1,950	12.766	2.214	6.682	21.202
Third births rate, (t)	1,950	4.273	1.017	2.113	10.042
Third births rate, $(t+1)$	1,950	4.193	0.959	2.162	10.763
Fourth births rate, (t)	1,950	1.141	0.364	0.135	2.911
Fourth births rate, $(t+1)$	1,950	1.118	0.351	0.226	3.066
Birth length, (t)	1,944	51.188	0.350	49.835	52.446
Birth length, $(t+1)$	1,945	51.170	0.343	49.709	52.395
Birth weight, (t)	1,944	3335.440	43.238	3161.403	3478.582
Birth weight, $(t+1)$	1,945	3331.848	42.947	3161.403	3492.907
Low birth weight, (t)	1,944	0.068	0.011	0.035	0.118
Low birth weight, $(t+1)$	1,945	0.069	0.011	0.035	0.119
Low Ponderal index, (t)	1,944	0.105	0.032	0.025	0.268
Low Ponderal index, (t+1)	1,945	0.105	0.032	0.025	0.233
High Ponderal index, (t)	1,944	0.086	0.031	0.023	0.280
High Ponderal index, (t+1)	1,945	0.086	0.031	0.023	0.294
Age at first birth, (t)	1,950	28.987	0.849	26.110	31.560
Age at first birth, $(t+1)$	1,950	29.109	0.832	26.334	31.560
Age at second birth, (t)	1,950	30.740	0.840	28.100	33.898
Age at second birth, $(t+1)$	1,950	30.848	0.836	27.780	33.898
Age at third birth, (t)	1,950	32.220	0.905	28.173	35.102
Age at third birth, $(t+1)$	1,950	32.327	0.905	28.917	35.420
Age at fourth birth, (t)	1,950	33.829	1.084	28.667	37.909
Age at fourth birth, $(t+1)$	1,950	33.912	1.059	28.667	38.143
continued in next table					

Table A1: Descriptive statistics I

Notes: The table shows descriptive statistics (number of observations, mean, standard deviation, minimum, and maximum) on the county level aggregated over all waves used in the estimations. Birth rates are births per 1,000 women in the respective age. The figures show aggregated values over the years 1998, 2002, 2006, 2007, 2008, and 2009. Accordingly, all variables measured in (t+1) are aggregated over the years 1999, 2003, 2007, 2008, 2009, and 2010. Debt and revenue of municipalities are not reported for the federal city states Hamburg and Bremen (including Bremerhaven). Revenue information is missing in 2001 from all 15 Schleswig-Holstein counties. Revenue information in 2009 is not included due to fragmentary raw data. Revenue and debt figures are divided by 1,000,000 EUR and the number of new dwellings is divided by 1,000. ¹ Tables of descriptive statistics for share of females and the population by years of age as used as control variables can be found in separate tables.

Table A2: Descriptive statistics II

Variable	Ν	Mean	S.D.	Min	Maz
Other dependent variables: continued					
In-migrants 18-29, fem., (t)	1,625	0.009	0.005	0.003	0.058
In-migrants 18-29, fem., (t+1)	1,625	0.009	0.005	0.003	0.049
In-migrants 30-49, fem., (t)	1,625	0.006	0.002	0.002	0.058
In-migrants 30-49, fem., (t+1)	1,625	0.006	0.002	0.002	0.04'
In-migrants 18-49, fem., (t)	1,625	0.014	0.007	0.006	0.11
In-migrants 18-49, fem., (t+1)	1,625	0.014	0.007	0.006	0.09
Out-migrants 18-29, fem., (t)	1,625	0.008	0.003	0.004	0.05
Out-migrants 18-29, fem., $(t+1)$	1,625	0.008	0.003	0.004	0.04
Out-migrants 30-49, fem., (t)	1,625	0.006	0.002	0.002	0.06
Out-migrants $30-49$, fem., $(t+1)$	1,625	0.006	0.002	0.002	0.04
Out-migrants 18-49, fem., (t)	1,625	0.014	0.006	0.007	0.11
Out-migrants $18-49$, fem., $(t+1)$	1,625	0.014	0.005	0.006	0.09
Birth rate married, (t)	1,950	34.119	5.533	18.947	58.45
Birth rate non-married, (t)	1,950	10.031	2.538	3.751	21.27
Birth rate married, $(t+1)$	1,950	33.639	4.979	18.947	59.11
Birth rate non-married, $(t+1)$	1,950	10.467	2.566	4.110	23.07
Birth rate religious, (t)	1,950	36.906	5.651	12.793	58.39
Birth rate non-religious, (t)	1,950	6.222	3.442	0.102	24.91
Birth rate religious, $(t+1)$	1,950	36.431	5.506	10.376	57.87
Birth rate non-religious, (t+1)	1,950	6.524	3.669	0.049	24.91
Birth rate German, (t)	1,948	41.741	4.333	26.633	62.47
Birth rate non-German, (t)	1,948	61.748	12.551	22.222	121.75
Birth rate German, $(t+1)$	1,950	41.842	3.895	28.147	63.31
Birth rate non-German, $(t+1)$	1,950	60.390	11.930	22.222	116.98
Birth rate age 18 , $(t+1)$	1,950	13.354	7.180	0.000	56.68
Birth rate age 19, $(t+1)$	1,950	22.473	9.776	0.000	84.29
Birth rate age 20, $(t+1)$	1,950	29.851	11.789	4.087	89.36
Birth rate age 21 , $(t+1)$	1,950	37.990	14.139	5.556	105.31
Birth rate age 22, $(t+1)$	1,950	46.104	15.690	7.843	114.15
Birth rate age 23, $(t+1)$	1,950	53.594	15.916	11.007	140.22
Birth rate age 24, $(t+1)$	1,950	63.443	17.142	13.434	152.70
Birth rate age 25, $(t+1)$	1,950	73.760	17.871	17.115	132.90
Birth rate age 26, $(t+1)$	1,950	84.231	18.821	16.777	144.44
Birth rate age 27, $(t+1)$	1,950	91.870	19.085	26.087	156.89
Birth rate age 28 , $(t+1)$	1,950	97.118	18.337	35.270	153.20
Birth rate age 29, $(t+1)$	1,950	101.590	18.048	48.574	166.66
Birth rate age $30, (t+1)$	1,950	102.173	17.024	46.875	182.74
Birth rate age 31 , $(t+1)$	1,950	98.786	16.205	43.384	163.35
Birth rate age 32 , $(t+1)$	1,950	91.750	15.861	26.022	159.09
Birth rate age 33 , $(t+1)$	1,950	82.379	14.931	30.973	133.76
Birth rate age 34, $(t+1)$	1,950	72.818	14.774	19.157	123.07
Birth rate age 35 , $(t+1)$	1,950	62.572	14.412	17.301	113.83
Birth rate age 36 , $(t+1)$	1,950	50.552	13.418	18.519	113.36
Birth rate age 37 , $(t+1)$	1,950	39.479	11.511	4.934	91.25
Birth rate age 38 , $(t+1)$	1,950	29.553	9.661	2.852	71.01
Birth rate age 39 , $(t+1)$	1,950	21.749	7.776	2.443	55.76
Birth rate age $40, (t+1)$	1,950	14.824	6.032	0.000	42.81
Birth rate age 41 , $(t+1)$	1,950	9.208	4.116	0.000	24.70
Birth rate age 42 , $(t+1)$	1,950	5.307	2.842	0.000	18.64
Birth rate age 43 , $(t+1)$	1,950	2.801	1.886	0.000	13.29
Birth rate age 44, $(t+1)$	1.950	1.469	1.271	0.000	8.59

Notes: The table shows descriptive statistics (number of observations, mean, standard deviation, minimum, and maximum) on the county level aggregated over all waves used in the estimations. Birth rates are births per 1,000 women in the respective age. The figures show aggregated values over the years 1998, 2002, 2006, 2007, 2008, and 2009. Accordingly, all variables measured in (t+1) are aggregated over the years 1999, 2003, 2007, 2008, 2009, and 2010.

	Ν	Mean	S.D.	Min	Max
Female	shares	per fem	ales age	ed 15-44	
$by \ age$					
15	1950	0.028	0.004	0.014	0.040
16	1950	0.029	0.005	0.014	0.040
17	1950	0.029	0.005	0.015	0.041
18	1950	0.029	0.004	0.015	0.041
19	1950	0.029	0.004	0.020	0.038
20	1950	0.029	0.003	0.020	0.050
21	1950	0.029	0.004	0.020	0.058
22	1950	0.029	0.004	0.020	0.060
23	1950	0.028	0.005	0.020	0.060
24	1950	0.028	0.005	0.020	0.057
25	1950	0.029	0.004	0.021	0.052
26	1950	0.029	0.004	0.022	0.048
27	1950	0.030	0.004	0.022	0.046
28	1950	0.030	0.004	0.022	0.045
29	1950	0.030	0.005	0.023	0.045
30	1950	0.031	0.005	0.023	0.046
31	1950	0.032	0.005	0.021	0.048
32	1950	0.032	0.005	0.020	0.049
33	1950	0.033	0.006	0.020	0.047
34	1950	0.034	0.006	0.020	0.066
35	1950	0.035	0.005	0.020	0.051
36	1950	0.037	0.005	0.020	0.053
37	1950	0.038	0.004	0.020	0.050
38	1950	0.040	0.004	0.022	0.052
39	1950	0.041	0.004	0.023	0.053
40	1950	0.042	0.004	0.025	0.056
41	1950	0.042	0.005	0.028	0.057
42	1950	0.042	0.005	0.027	0.059
43	1950	0.042	0.006	0.025	0.060
44	1950	0.042	0.006	0.026	0.056

Table A3: Descriptive statistics of age structure controls I

Notes: The table shows descriptive statistics of byage-shares in the female population aged 15 to 44 years (number of observations, mean, standard deviation, minimum, and maximum) on the county level aggregated over all waves used in the estimations. The figures show aggregated values over the years 1998, 2002, 2006, 2007, 2008, and 2009.

	Ν	Mean	S.D.	Min	Max
Popula	tion she	ares per	whole p	opulatio	n
by age					
45	1950	0.016	0.002	0.011	0.021
46	1950	0.016	0.002	0.011	0.021
47	1950	0.016	0.002	0.011	0.019
48	1950	0.015	0.002	0.011	0.019
49	1950	0.015	0.001	0.011	0.019
50	1950	0.014	0.001	0.010	0.018
51	1950	0.014	0.001	0.009	0.018
52	1950	0.013	0.002	0.008	0.018
53	1950	0.013	0.002	0.006	0.017
54	1950	0.013	0.001	0.007	0.017
55	1950	0.013	0.001	0.008	0.017
56	1950	0.012	0.001	0.008	0.017
57	1950	0.012	0.002	0.006	0.019
58	1950	0.013	0.002	0.007	0.019
59	1950	0.012	0.002	0.008	0.018
60	1950	0.012	0.002	0.007	0.017
61	1950	0.011	0.002	0.005	0.017
62	1950	0.011	0.002	0.005	0.018
63	1950	0.011	0.002	0.005	0.017
64	1950	0.011	0.002	0.005	0.016
65	1950	0.011	0.002	0.007	0.017
66	1950	0.012	0.002	0.007	0.018
67	1950	0.012	0.002	0.007	0.017
68	1950	0.012	0.002	0.007	0.017
69	1950	0.012	0.002	0.006	0.017
70	1950	0.011	0.002	0.006	0.017
71	1950	0.010	0.002	0.006	0.016
72	1950	0.010	0.001	0.006	0.014
73	1950	0.009	0.001	0.006	0.014
74	1950	0.009	0.001	0.005	0.013
75 +	1950	0.082	0.014	0.040	0.127

Table A4: Descriptive statistics of age structure controls II

Notes: The table shows descriptive statistics of byage-shares shares in the whole population (number of observations, mean, standard deviation, minimum, and maximum) on the county level aggregated over all waves used in the estimations. The figures show aggregated values over the years 1998, 2002, 2006, 2007, 2008, and 2009.

Variable	Mean		Mean-Diff.	T-t	test
	$\operatorname{Control}$	Treatment	(T-C)	t-stat	p-value
Female sh	hares per j	females aged	15-44		
by age		0			
15	0.0285	0.0271	-0.0014	-3.3846	0.0008
16	0.0282	0.0268	-0.0014	-3.5367	0.0005
17	0.0269	0.0257	-0.0013	-3.4095	0.0007
18	0.0270	0.0258	-0.0011	-3.4298	0.0007
19	0.0274	0.0266	-0.0009	-3.4665	0.0006
20	0.0280	0.0281	0.0000	0.1686	0.8662
21	0.0282	0.0284	0.0002	0.5401	0.5895
22	0.0285	0.0288	0.0003	0.6480	0.5174
23	0.0272	0.0274	0.0002	0.5936	0.5532
24	0.0268	0.0273	0.0005	1.1295	0.2595
25	0.0269	0.0271	0.0002	0.3883	0.6980
26	0.0270	0.0272	0.0002	0.5452	0.5860
27	0.0266	0.0267	0.0001	0.2765	0.7824
28	0.0274	0.0274	0.0000	0.1304	0.8963
29	0.0279	0.0280	0.0001	0.4960	0.6202
30	0.0308	0.0307	-0.0001	-0.3481	0.7280
31	0.0340	0.0337	-0.0003	-1.2850	0.1997
32	0.0356	0.0355	-0.0001	-0.2687	0.7883
33	0.0386	0.0385	-0.0000	-0.1056	0.9160
34	0.0403	0.0406	0.0004	1.0545	0.2925
35	0.0413	0.0416	0.0004	1.1195	0.2638
36	0.0418	0.0426	0.0007	2.3557	0.0191
37	0.0417	0.0423	0.0006	2.1485	0.0324
38	0.0423	0.0432	0.0009	2.9672	0.0032
39	0.0424	0.0430	0.0005	1.9798	0.0486
40	0.0413	0.0418	0.0005	1.7971	0.0733
41	0.0409	0.0416	0.0007	2.2830	0.0231
42	0.0401	0.0404	0.0003	1.0302	0.3037
43	0.0390	0.0390	-0.0000	-0.0274	0.9782
44	0.0373	0.0371	-0.0002	-0.5453	0.5859

Table A5: Pre-treatment descriptive statistics of age structure controls I

Notes: The table shows means, differences in means and differences-in-meanstests for the control and the treatment group in 2002, the pre-treatment period. The last two columns depict results of T-tests for equality in means for each variable as t-statistics and p-values. Variables are by-age-shares in the female population aged 15 to 44 years.

Variable	Mean		Mean-Diff.	T-test		
	$\operatorname{Control}$	Treatment	(T-C)	t-stat	p-value	
Populatio	on shares p	per whole pop	pulation			
by age						
45	0.0148	0.0151	0.0003	2.9103	0.0039	
46	0.0143	0.0146	0.0002	2.6540	0.0083	
47	0.0138	0.0139	0.0002	2.2006	0.0285	
48	0.0136	0.0138	0.0002	1.8337	0.0676	
49	0.0131	0.0133	0.0003	2.9489	0.0034	
50	0.0132	0.0134	0.0002	2.1158	0.0351	
51	0.0129	0.0130	0.0001	1.2366	0.2171	
52	0.0131	0.0133	0.0002	2.7936	0.0055	
53	0.0129	0.0131	0.0001	1.4282	0.1542	
54	0.0121	0.0122	0.0001	1.3282	0.1850	
55	0.0113	0.0114	0.0001	1.0971	0.2734	
56	0.0103	0.0102	-0.0002	-1.4547	0.1467	
57	0.0085	0.0084	-0.0001	-0.6329	0.5272	
58	0.0111	0.0112	0.0001	0.5701	0.5690	
59	0.0113	0.0112	-0.0001	-0.4344	0.6643	
60	0.0111	0.0110	-0.0002	-1.1553	0.2488	
61	0.0135	0.0135	-0.0000	-0.0706	0.9437	
62	0.0144	0.0144	0.0000	0.0513	0.9591	
63	0.0142	0.0142	-0.0000	-0.0303	0.9759	
64	0.0134	0.0132	-0.0002	-1.3086	0.1916	
65	0.0125	0.0123	-0.0002	-1.6852	0.0929	
66	0.0121	0.0119	-0.0002	-1.2889	0.1984	
67	0.0115	0.0113	-0.0002	-1.6898	0.0920	
68	0.0107	0.0104	-0.0003	-2.3243	0.0207	
69	0.0087	0.0085	-0.0002	-2.2338	0.0262	
70	0.0087	0.0085	-0.0002	-2.3332	0.0203	
71	0.0087	0.0085	-0.0002	-2.2092	0.0279	
72	0.0092	0.0088	-0.0003	-2.7378	0.0065	
73	0.0088	0.0086	-0.0002	-1.8944	0.0591	
74	0.0086	0.0085	-0.0002	-1.5822	0.1146	
75 +	0.0729	0.0694	-0.0035	-2.3878	0.0175	

Table A6: Pre-treatment descriptive statistics of age structure controls II

Notes: The table shows means, differences in means and differences-in-meanstests for the control and the treatment group in 2002, the pre-treatment period. The last two columns depict results of T-tests for equality in means for each variable as t-statistics and p-values. Variables are by-age-shares in the whole population.

	Birth	Birth	Low birth	Ponderal	
	length (cm)	weight (grams)	weight	below $p10$	above p90
	\mathbf{t}	\mathbf{t}	\mathbf{t}	t	t
	(1)	(2)	(3)	(4)	(5)
Child care coverage	0.165	-43.219	0.003	0.044	-0.040
	(0.296)	(32.711)	(0.012)	(0.032)	(0.025)
Regional controls	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes
County FE	Yes	Yes	Yes	Yes	Yes
Ν	1,944	1,944	1,944	1,944	1,944
Number of counties	325	325	325	325	325
F-statistic	5.59	19.26	5.03	2.74	3.63

Table A7: Investigating marginal birth outcomes in t

Notes: The table shows the results of generalized difference-in-differences estimations on outcomes in period t. Outcome variables birth length and birth weight are averages over all births in a county. Low birth weight is the county average of a dummy variable equal to one for birth weights below 2,500 grams. Ponderal index measures are county averages of indicators that are equal to one if the Ponderal index is below the 10th percentile resp. above the 90th percentile of the German Ponderal index distribution from 1998 to 2010 (*Ponderal = weight(kg)/height(m)*³). Regional control variables include the county's population density, GDP per capita, the male employment rate, the interpolated conservative vote share, the share of high educated females until age 44 as well as an extensive set of age structure controls. Age structure control variables include the year-of-age share of 15 to 44 year old women over all women aged 15 to 44 and the year-of-age shares of 45 to 74 year old and 75 plus years old people over the population in each county. Outcomes are missing in 1998 through 2008 for Aachen and in 1998 for Hannover, as we cannot recover the means after the counties' borders have changed. Robust standard errors are clustered at the county level and given in parentheses. *** 1 percent significance level; ** 5 percent significance level.

	Child care coverage	S.E.	Regional Controls, Year & county FE	Ν	Counties
	(1)	(2)	(3)	(4)	(5)
Female high education	on heterogen	eity			
Top 75%, t	13.332***	(4.663)	Yes	492	82
Bottom 25%, t	5.707	(4.919)	Yes	492	82
Top 75%, t+1	11.913**	(4.628)	Yes	492	82
Bottom 25%, t+1	7.946	(5.707)	Yes	492	82
GDP heterogeneity					
Top 75%, t	11.925**	(5.918)	Yes	492	82
Bottom 25%, t	8.722*	(4.708)	Yes	492	82
Top 75%, t+1	11.093**	(4.895)	Yes	492	82
Bottom 25%, t+1	12.270***	(4.046)	Yes	492	82
Conservative vote sh	are heteroge	neity			
Top 75%, t	1.446	(4.996)	Yes	492	82
Bottom 25%, t	8.907*	(4.811)	Yes	492	82
Top 75%, t+1	-0.107	(6.834)	Yes	492	82
Bottom 25%, t+1	6.535	(6.315)	Yes	492	82

Table A8: Effect heterogeneity across county characteristics

Notes: The table shows the results of generalized difference-in-differences estimations. Estimates in rows are from independent regressions on samples for 75th percentile and above resp. 25th percentile and below evaluated by the variable denoted in italics. The outcome variables are denoted in rows and all are defined as fractions of the population within a county. Regional control variables include the county's population density, GDP per capita, the male employment rate, the interpolated conservative vote share, the share of high educated females until age 44 as well as an extensive set of age structure controls. Age structure control variables include the year-of-age share of 15 to 44 year old women over all women aged 15 to 44 and the year-of-age shares of 45 to 74 year old and 75 plus years old people over the population in each county. Robust standard errors are clustered at the county level and given in parentheses. *** 1 percent significance level; ** 5 percent significance level; * 10 percent significance level.

	Effects on birth rate in $t+1$							
	Child care coverage	S.E.	Regional Controls, Year & county FE	Ν	Counties	F-stat		
	(1)	(2)	(3)	(4)	(5)	(6)		
Marriage status								
Married , t	9.996^{***}	(2.451)	Yes	$1,\!950$	325	147.4		
Married , $t{+}1$	12.284***	(2.188)	Yes	$1,\!950$	325	119.4		
Not married , t	2.119^{*}	(1.125)	Yes	$1,\!950$	325	85.20		
Not married , $\mathrm{t}{+1}$	-0.009	(1.249)	Yes	$1,\!950$	325	74.83		
Religious affiliation								
Yes , t	12.583***	(2.940)	Yes	$1,\!950$	325	90.51		
Yes , t+1	13.289***	(3.812)	Yes	$1,\!950$	325	74.46		
No , t	6.082***	(1.958)	Yes	1,950	325	14.06		
No , t+1 $$	7.580***	(2.217)	Yes	$1,\!950$	325	15.05		
Nationality								
German , t	10.923***	(2.426)	Yes	1,948	325	71.08		
German , $t+1$	10.774^{***}	(2.513)	Yes	$1,\!950$	325	47.32		
Non-German , t	20.214*	(10.859)	Yes	1,948	325	22.27		
Non-German , $t{+}1$	15.062	(9.364)	Yes	$1,\!950$	325	48.16		

Table A9: Effect heterogeneity across mother characteristics

Notes: The table shows the results of generalized difference-in-differences estimations. The outcome variable births per 1,000 women by mothers' characteristics, birth rates by nationality of mothers are per 1,000 women of German resp. non-German nationality. Estimates in rows are from independent regressions. Regional control variables include the county's population density, GDP per capita, the male employment rate, the interpolated conservative vote share, the share of high educated females until age 44 as well as an extensive set of age structure controls. Age structure control variables include the year-of-age share of 15 to 44 year old women over all women aged 15 to 44 and the year-of-age shares of 45 to 74 year old and 75 plus years old people over the population in each county. Robust standard errors are clustered at the county level and given in parentheses. *** 1 percent significance level; ** 5 percent significance level; * 10 percent significance level.

2. Data Appendix

County level data from the Statistical Offices of the German Länder (*Statistische Landesämter*) and the Federal Employment Agency is provided in per year per item files. We identify counties by official id numbers and conduct a county level panel from 1997 to 2010. During this investigation period, reforms in geographic local government competency and in data aggregation rules altered county identifiers in some instances. In order to get a fully balanced panel, we made necessary changes that produced time-stable units of observations. Hannover, Aachen and Saarbrücken are merged to city-urban regions, whereas in earlier waves each consists of two separate counties. We use the merged definition throughout all waves and add up values if necessary.

Child care slots and population figures are record date measures, reported in the first half of March (child care from 2006 onwards), resp. 31st December (population, child care until 2002). Births per 1,000 women are defined as the sum of births within the year divided by population as of 31st December. As child care from 2006 onwards is evaluated in March and population on 31st December, we divide it by one year lagged population. Child care in 1998 and 2002 is measured on 31st December; we divide it by one year lagged population nevertheless to avoid that births (the outcome) enter the denominator of the child care variable (the variable of interest).

Public child care figures are conducted from two different data collections by the Statistical Offices of the German Länder (*Statistische Landesämter*). Public child care is defined as all publicly funded or subsidized child care, including child care centers and childminders. From 2006 onwards we observe occupied child care slots, whereas in 1998 and 2002 we observe available child care slots. As there was excess demand for child care, we can credibly assume both measures to be comparable. However, there is reason to believe that in 1998 and 2002 the number of public child care slots is underestimated. In these years, children under the age of three that were enrolled in child care centers for over three year olds are not included in the supply measures and the number of childminders had to be estimated. The undervaluation of public child care coverage is believed to be of the magnitude of about one percentage point (DJI, 2008).

References

DJI (2008). Zahlenspiegel 2007 - Kinderbetreuung im Spiegel der amtlichen Statistik. Tech. rep.