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pdynmc – An R-package for estimating linear dynamic panel data models

based on linear and nonlinear moment conditions
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Abstract. pdynmc is an R-package for GMM estimation of linear dynamic panel data models that are

based on linear and nonlinear moment conditions as proposed by Anderson and Hsiao (1982), Holtz-Eakin,

Newey, and Rosen (1988), Arellano and Bover (1995), and Ahn and Schmidt (1995). This paper describes

the functionality of the package and the options regarding instrument type, estimation methodology, gen-

eral configuration, specification testing and inference from the perspective of an applied statistician. The

description of the functionality is based on replicating the results on a publicly available panel data set.

Additionally, we link our implementation to other software and packages for GMM estimation of linear

dynamic panel data models.
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1 Introduction

The linear dynamic panel data model allows to account for dynamics and unobserved individual-specific

heterogeneity simultaneously. Due to the presence of unobserved individual-specific effects and lagged

dependent variables, standard estimation techniques like pooled ordinary least squares (OLS) or the within

estimation generally do not lead to consistent estimates (see, e.g., Hsiao, 2014). A suitable alternative

for obtaining parameter estimates in linear dynamic panel data models is deriving moment conditions (or

population orthogonality conditions) from the model assumptions. The moment conditions may be linear

(Anderson and Hsiao, 1982; Holtz-Eakin, Newey, and Rosen, 1988; Arellano and Bover, 1995) or nonlinear

(Ahn and Schmidt, 1995) in parameters and determine the natural instruments available for estimation.

Usually, the number of moment conditions exceeds the number of parameters and the moment conditions

need to be aggregated appropriately. This can be achieved by the generalized method of moments (GMM),

where (weighted) linear combinations of the moment conditions are employed to obtain parameter estimates.

Theoretical results and evidence from Monte Carlo simulations in the literature suggest that incorporating

the nonlinear moment conditions proposed by Ahn and Schmidt (1995) may prove valuable for particular

data generating processes (DGPs). One example is when the process exhibits high persistence and the

linear moment conditions fail to identify the model parameters: The nonlinear moment conditions may

still provide identification (Bun and Kleibergen, 2014; Bun and Sarafidis, 2015; Gorgens, Han, and Xue,

2016). Further note that the nonlinear moment conditions only impose standard assumptions about the

(unknown) underlying DGP. Despite these results, however, and although the nonlinear moment conditions

were proposed by Ahn and Schmidt more than 20 years ago, standard estimation routines are generally not

available across statistical software. To the best of our knowledge, there is currently only the implementation

provided by (Kripfganz, 2018) for the commercial statistical software Stata (Stata Corporation, 2011) that

is explicitly designed to incorporate nonlinear moment conditions into GMM estimation.

Our package pdynmc provides an implementation of GMM estimation of linear dynamic panel data models

based on different sets of moment conditions in the statistical open source software R (R Core Team,

2019). The building blocks from which the sets of moment conditions available for GMM estimation can

be constructed are the nonlinear (in parameters) Ahn and Schmidt (1995) moment conditions and the

two different types of linear moment conditions proposed by Holtz-Eakin, Newey, and Rosen (1988) and

Arellano and Bover (1995). Our package allows to use various combinations of these moment conditions to

obtain parameter estimates. In their standard form, the Holtz-Eakin, Newey, and Rosen (1988), Arellano

and Bover (1995), and Ahn and Schmidt (1995) moment conditions are derived from the lagged dependent

variable. Additional moment conditions, which may arise from assumptions about the non-lagged dependent

explanatory variables, can also be included in estimation. Since the moment conditions employed in GMM

estimation of linear dynamic panel data models are derived from model assumptions, a basic understanding

of these assumptions is vital for setting up a plausible estimation routine. The methodological part of this

paper briefly reviews the assumptions implied when using particular moment conditions in estimation and

provides further references for more detailed overviews.
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The structure of the paper is as follows. Section 2 briefly sketches the linear dynamic panel data model, states

the underlying assumptions frequently used in the literature, and describes the moment conditions arising

from the model assumptions. Section 3 covers GMM estimation of linear dynamic panel data models and

illustrates the minimization criterion, estimation in one, two, or multiple steps, and closed form solutions.

Section 4 outlines the computation of standard errors, specification- and overidentifying restrictions testing,

and the testing of general linear hypotheses. Related software and R-packages are summarized in Section

5. Section 6 illustrates the estimation of linear dynamic panel data models with pdynmc for the data set of

Arellano and Bond (1991) on adjustments of employment of firms located in the United Kingdom. Section

7 concludes and sketches functionality we plan to add to future releases of the package.

2 Linear dynamic panel data model

2.1 Model and standard assumptions

For a given sample with a cross section dimension n and a time series dimension T , consider the two

equations

yi,t = αyi,t−1 + βxi,t + ui,t, i = 1, . . . , n; t = 2, . . . , T, (1)

ui,t = ηi + εi,t, (2)

where yi,t and yi,t−1 denote the dependent variable and its lag, α is the lag parameter, and xi,t is a non-

lagged dependent explanatory variable with corresponding slope coefficient β. The second equation requires

that the (unobserved) composite error term ui,t can be separated into an unobserved individual-specific

effect ηi and an idiosyncratic remainder component εi,t.
4 The initial time period is denoted by t = 1.

Combining the Equations (1) and (2) yields the single equation form of the model

yi,t = αyi,t−1 + βxi,t + ηi + εi,t, i = 1, . . . , n; t = 2, . . . , T. (3)

We impose the following set of standard assumptions (SA) from the literature (see Ahn and Schmidt, 1995):

The data are independently distributed across i, (4)

E(ηi) = 0, i = 1, ..., n,

E(εi,t) = 0, i = 1, ..., n; t = 2, ..., T,

E(εi,t · ηi) = 0, i = 1, ..., n; t = 2, ..., T,

E(εi,t · εi,s) = 0, i = 1, ..., n; t 6= s,

E(yi,1 · εi,t) = 0, i = 1, ..., n; t = 2, ..., T,

n→∞, while T is fixed, such that
n

T
→ 0.

4We only include one lag of the dependent variable, one non-lagged dependent explanatory variable, and omit

unobserved time-specific effects for simplicity of exposition and notational convenience. Extending the representation

is straightforward. Unobserved time-specific effects can, e.g., be incorporated by including time dummies.
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The six assumptions in Equation (4) imply: First, the assumption that the data are independently dis-

tributed across individuals allows for dependence of the model components across time, but not across

individuals. Second, the unobserved individual-specific effect and the idiosyncratic remainder component

need to be zero in expectation (if this is not the case, a constant can be included in the model to ensure

the property). Third, orthogonality of the εi,t with the following model components is required: The unob-

served individual-specific effects, the idiosyncratic remainder components of all other time periods, and the

initial conditions of the yi,t-process. Due to the zero mean assumption concerning the εi,t, uncorrelatedness

follows from orthogonality of these model components. The last assumption requires that the cross section

dimension is large, while the time series dimension is finite.

2.2 Moment conditions from standard assumptions

Usual approaches in applied statistics obtain (OLS) estimates of the model parameters of Equation (3) by: (i)

ignoring the unobserved individual-specific effects, (ii) deducting the individual-specific mean over time from

all left-hand- and right-hand side variables (also referred to as the within transformation) of the equation, or

(iii) including one dummy per observation in the estimation (the least squares dummy variables – or LSDV

– approach; the within estimation and LSDV yield identical slope coefficient estimates). However, due to

the presence of the lagged dependent variable and the unobserved individual-specific effects, the techniques

(i)-(iii) do not yield consistent estimates without imposing additional restrictions on the model (see, e.g.,

Hsiao, 2014).

The unobserved individual-specific effects can be eliminated from Equation (3) by first differencing the

equation. Utilizing the ∆-operator to indicate the first differencing gives

∆yi,t = α∆yi,t−1 + β∆xi,t + ∆εi,t, i = 1, . . . , n; t = 2, . . . , T. (5)

Due to the first differenced lagged dependent variables ∆yi,t−1 = yi,t−1 − yi,t−2 and the first differenced

error terms ∆εi,t = εi,t−εi,t−1 not being orthogonal, estimating Equation (5) with OLS still leads to biased

coefficient estimates. The standard assumptions stated in Equation (4) provide a remedy: The assumptions

imply two sets of moment conditions, whose sample analogues can be used in estimation. Note that the

following moment conditions refer to the population and that the expectation is taken over the cross section

dimension.

Holtz-Eakin, Newey, and Rosen (1988) (hereafter HNR) propose the linear (in parameters) moment condi-

tions

E(yi,s ·∆ui,t) = 0, t = 3, . . . , T ; s = 1, . . . , t− 2. (6)

Depending on the time series dimension available for estimation, Equation (6) provides 0.5(T − 1)(T − 2)

moment conditions. Equivalent moment conditions can be derived from the non-lagged dependent explana-

tory variables. Endogenous (xend), predetermined (xpre), and (strictly) exogenous (xex) variables provide
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the linear moment conditions (see the Equations (9.5)-(9.7) of Blundell, Bond, and Windmeijer, 2001):

E(xi,s ·∆ui,t) = 0, t = 3, . . . , T, where (7)

s = 1, . . . , t− 2, for x = xend,

s = 1, . . . , t− 1, for x = xpre,

s = 1, . . . , T, for x = xex.

For endogenous non-lagged dependent explanatory variables, moment conditions analogous to Equation

(6) result. When the non-lagged dependent explanatory variables are predetermined, one more moment

condition per time period is available and for exogenous non-lagged dependent explanatory variables, all

non-lagged dependent explanatory variables can be used as instruments for time periods t = 3, . . . , T –

compared to the case for endogenous non-lagged dependent explanatory variables.

A further set of moment conditions implied by the SA in Equation (4) is elaborated on by Ahn and Schmidt

(1995) (hereafter AS). The authors point out that the following T − 3 additional moment conditions can be

used in estimation:

E(ui,t ·∆ui,t−1) = 0, t = 4, . . . , T. (8)

Rewriting the equation and expressing the moment conditions in terms of parameters and observable vari-

ables reveals that the AS moment conditions are nonlinear in parameters. Equations (6) and (8) are slightly

adjusted versions of the AS-Equations (3) and (4).5

For a given panel data set, parameter estimates can be obtained by using the sample analogues of the

moment conditions. This yields the m sample moment conditions M = 1
n

∑n
i=1 Mi. For the linear dynamic

panel data model specified in Equation (3), consider the following moment conditions and the corresponding

vector of individual moment condition contributions6 Mi to be available for estimation:

5The notation is adjusted to reflect the time periods of a data set. Hence, t = 0 of AS is changed to t = 1.

Additionally note, that the AS moment conditions could be built on reference period T instead of t via E(ui,T ·

∆ui,t) = 0, with t = 3, . . . , T −1 – as originally proposed in Ahn and Schmidt (1995). The HNR moment conditions

could then also be expressed based on the reference period T by E(yi,s ·∆ui,T ) = 0, with s = 1, . . . , T −2. We adjust

the AS moment conditions here, for all moment conditions to be expressed based on the same reference period.
6In the following, a tilde sign denotes the estimates during optimization, while a hat sign indicates the final

optimization results (i.e., the coefficient estimates and the corresponding residuals).
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

E(yi,1 · ∆ui,3)

E(yi,1 · ∆ui,4)

E(yi,2 · ∆ui,4)

E(yi,1 · ∆ui,5)

...

E(yi,3 · ∆ui,5)

...

E(yi,T−2 · ∆ui,T )

E(xi,1 · ∆ui,3)

E(xi,2 · ∆ui,3)

E(xi,1 · ∆ui,4)

...

E(xi,3 · ∆ui,4)

...

E(xi,T−1 · ∆ui,T )

E(ui,4 · ∆ui,3)

...

E(ui,T · ∆ui,T−1)


︸ ︷︷ ︸

m×1

=



0

0

...

0

0

...

0

0

...

0



, Mi︸︷︷︸
m×1

=



yi,1 · ∆̃ui,3

yi,1 · ∆̃ui,4

yi,2 · ∆̃ui,4

yi,1 · ∆̃ui,5

...

yi,3 · ∆̃ui,5

...

yi,T−2 · ∆̃ui,T

xi,1 · ∆̃ui,3

xi,2 · ∆̃ui,3

xi,1 · ∆̃ui,4

...

xi,3 · ∆̃ui,4

...

xi,T−1 · ∆̃ui,T

ũi,4 · ∆̃ui,3

...

ũi,T · ∆̃ui,T−1



.

The dashed lines separate the different sets of moment conditions shown here: Two sets of HNR moment

conditions (derived from the lagged dependent variable and one predetermined xi,t) and the nonlinear mo-

ment conditions. Compared to the case illustrated, T moment conditions are available for each time period

t = 3, . . . , T from the xi,t-process if xi,t is exogenous – while when xi,t is endogenous, one moment condition

per time period is lost and the moment conditions resulting from the xi,t are structured equivalently to the

ones that arise from the yi,t-process7.

Further consider decomposing the individual moment condition contributions into M i = Z ′i · s̃i, where Z ′i

denotes the transpose of a matrix that does not depend on parameter estimates, while the column vector

s̃i does. For the linear dynamic panel data model in Equation (3) with a predetermined xi,t, we obtain:

7When T is used as reference period (and all moment conditions involve ui,T ), the number of HNR moment

conditions reduces substantially and only one moment condition is available per time period. For the nonlinear

moment conditions, the number of moment conditions remains unchanged.
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Z′i =



yi,1 0 · · · 0 0 · · · 0

0 yi,1

yi,2

0

...
...

...
...

...

0

yi,1
...

0 0 yi,T−2 0 · · · 0

xi,1 0 · · · 0 0 · · · 0

xi,2 0

0 xi,1

xi,2

xi,3

0

...
...

...
...

...

0

xi,1

...

0 0 xi,T−1 0 · · · 0

0 · · · 0 1 0 · · · 0

...
...

...
. . .

...

0

0 · · · 0 0 · · · 0 1


︸ ︷︷ ︸

m×(2T−5)

, s̃i =



∆̃ui,3

∆̃ui,4

...

∆̃ui,T

ũi,4 · ∆̃ui,3

ũi,5 · ∆̃ui,4

...

ũi,T · ∆̃ui,T−1


︸ ︷︷ ︸

(2T−5)×1

.

Compared to the case shown, xi,1, . . . , xi,T can be used for each time period t = 3, . . . , T in the HNR-part

of the matrix Z ′i if xi,t is strictly exogenous – while an equivalent structure to the yi,t-part results for the

xi,t-part of the matrix if xi,t is endogenous. Changing the reference period from t to T reduces the HNR-part

of the matrix to a column vector; the structure of the AS-part remains unchanged.

Stacking the Z ′i for all cross sectional observations horizontally yields the m × n(2T − 5) matrix Z ′ =

(Z ′1, . . . ,Z
′
n). Concatenating the column vectors s̃i yields the n(2T − 5) vector s̃.
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2.3 Moment conditions from extended assumptions

Under SA, the moment conditions stated in Equations (6), (7), and (8) can be employed to obtain coefficient

estimates. Additional moment conditions can be derived from the assumption

E(∆yi,t · ηi) = 0, i = 1, . . . , n. (9)

This expression requires that the dependent variable and the unobserved individual-specific effects are

constantly correlated over time for each individual. Deviations from the assumption are required to be

unsystematic over both, the cross section and the time series dimension (see Section 6.5 in Arellano, 2003,

which also provides an example). For the case of non-lagged dependent explanatory variables, Blundell,

Bond, and Windmeijer (2001) state that if ∆yi,t and ηi are correlated, it is still possible that ∆xi,t and ηi

are uncorrelated – while the reverse is unlikely to be the case (for a derivation confirming this statement

see Fritsch, 2019).

From the ‘constant correlated effects’8 assumption, the additional T−2 Arellano and Bover (1995) (hereafter

AB) linear moment conditions can be derived:

E(∆yi,t−1 · ui,t) = 0, t = 3, . . . , T. (10)

By rewriting these moment conditions, it can be shown that the AB moment conditions encompass the

nonlinear AS moment conditions and render them redundant for estimation (for a derivation see Fritsch,

2019).

Additional AB moment conditions can be derived from the non-lagged dependent explanatory variables.

Depending on the nature of the xi,t-process, the further AB moment conditions are available for estimation:

E(∆xi,v · ui,t) = 0, where

v = 2, . . . , t− 1; t = 3, . . . T, for x = xend,

v = t; t = 2, . . . , T, for x = xex or x = xpre.

From an endogenous xi,t, T − 2 moment conditions can be derived – while T − 1 moment conditions are

available for an exogenous or predetermined xi,t.

When using the HNR and AB moment conditions to estimate the linear dynamic panel data model in

Equation (3) with a predetermined explanatory variable, M i is as follows:

8Bun and Sarafidis (2015) use this term and point out that this assumption is also referred to as ‘effect stationarity’

(Kiviet, 2007a) or ‘mean stationarity’ (Arellano, 2003) in the literature.
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Z′i =



yi,1 0 · · · 0 0 · · · 0 0 · · · 0

0 yi,1

yi,2
... 0

...
...

...
...

...

0

yi,1
...

0 · · · 0 yi,T−2 0 · · · 0 0 · · · 0

xi,1 0 · · · 0 0 · · · 0 0 · · · 0

xi,2 0

0 xi,1

xi,2

xi,3

... 0
...

...
...

...
...

0

xi,1

...

0 · · · 0 xi,T−1 0 · · · 0 0 · · · 0

0 · · · 0 ∆yi,2 0 · · · 0 0 · · · 0

...
... 0 ∆yi,3

...
...

...

...
. . . 0

0 · · · 0 0 · · · 0 ∆yi,T−1 0 · · · 0

0 · · · 0 0 · · · 0 ∆xi,2 0 · · · 0

0 ∆xi,3

...

...
...

...
...

...
. . . 0

0 · · · 0 0 · · · 0 0 · · · 0 ∆xi,T


︸ ︷︷ ︸

m×(3T−5)

,

s̃′i = (∆̃ui,3, ∆̃ui,4, · · · , ∆̃ui,T ũi,3, ũi,4, · · · , ũi,T , ũi,2, ũi,3, · · · , ũi,T )︸ ︷︷ ︸
1×(3T−5)

.

Compared to the case shown, no additional AB moment conditions arise if xi,t is strictly exogenous. When

xi,t is endogenous, the structure of the xi,t-part corresponding to the AB moment conditions of Z′
i reduces

by the last element and is equivalent to the yi,t-part corresponding to the AB moment conditions. The

changes of the HNR-part of the matrix are as illustrated in Section 2.2. Changing the reference period from

t to T yields the changes in the number of HNR moment conditions discussed earlier; the number of AB

9



moment conditions remains the same, with the structure of the AB-part of the matrix Z ′i reducing to a

column vector9.

3 GMM estimation

3.1 Minimization criterion

For a given loss function, the p parameters of the linear dynamic panel data model in Equation (3) can

be estimated by employing the moment conditions derived from the model assumptions. According to the

necessary (but not sufficient) order condition for identification (see, e.g., Hayashi, 2000), at least as many

moment conditions need to be available as there are model parameters for the parameters to be estimable10.

Each moment condition is a function of the p model parameters. If the number of moment conditions and the

number of model parameters coincide (m = p), the system of equations (or moment conditions) possesses

a unique solution. Due to the number of moment conditions increasing with the time series dimension,

the number of available moment conditions typically exceeds the number of model parameters with linear

dynamic panel data models. Therefore, obtaining parameter estimates from the system of equations defined

by the moment conditions requires an aggregation scheme such as the generalized method of moments

(GMM). For a given sample, GMM estimation minimizes the aggregated squared distance of the moment

conditions from zero and can be represented as

L2
W = M

′ ·W ·M . (11)

The index of the L2
W -norm expresses that the norm depends on the weighting matrix W and the superscript

indicates that the norm is a quadratic form. The m × m weighting matrix W guides the aggregation of

the m moment conditions. Recall the notation developed in Section 2, where the moment conditions are

decomposed into a vector that depends on the parameter estimates s̃ and a matrix Z that does not. Plugging

these two terms into Equation (11) gives:

L2
W =

1

n2
· s̃′Z ·W ·Z ′s̃.

Minimizing the equation yields the GMM estimator θ̂.

9When using the reference period T instead of t, the AB moment conditions can be built on

E(∆yi,v · ui,T ) = 0, with t = 3, . . . , T,

E(∆xi,v · ui,T ) = 0, where

v = 2, . . . , T − 1, for x = xend,

v = 2, . . . , T, for x = xex or x = xpre.

10A discussion of the assumptions required for identification, consistency, and asymptotic normality of the GMM

estimator when estimating linear dynamic panel data models is provided in Fritsch (2019).
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3.2 One-step, two-step, and multiple-step estimation

In practice, GMM estimation is frequently carried out in multiple steps. In order to start the estimation

process, an initial estimate of the weighting matrix Ŵ is required. Obviously, plugging in different weighting

matrices into Equation (11) yields varying objective function values and different estimates for the model

parameters. Different propositions for the first step weighting matrix – with varying asymptotic efficiency –

exist in the literature (see Blundell, Bond, and Windmeijer, 2001) for the various types of moment conditions

which can be employed in the estimation of the linear dynamic panel data model in Equation (3). Common

examples involve identity or tridiagonal matrices. Generally, the proposed weighting matrices are based

on the expected variances and covariances of the moment conditions and are derived from the underlying

model assumptions. Assuming consistency and asymptotic normality of the GMM estimator, the optimal

W is proportional (up to a multiplicative constant) to the inverse of the variance covariance matrix of the

moment conditions (see, e.g., Arellano, 2003). A possible estimate for the first step weighting matrix Ŵ 1

of the one-step GMM estimator (GMM1S) is

Ŵ 1 =

(
1

n
·Z ′HZ

)−1
. (12)

The structure of the matrix H varies depending on the types of moment conditions employed in estimation.

When only HNR moment conditions are used, Arellano and Bond (1991) propose to set the matrix to

HHNR =



2 −1 0 0 . . . 0

−1 2 −1 0

0 −1
. . .

. . .
. . .

...
...

. . .
. . . 0

2 −1

0 . . . 0 −1 2


.

The tridiagonal matrix HHNR accounts for the serial correlation in the idiosyncratic remainder components

introduced by first differencing Equation (3) to eliminate the unobserved individual-specific effects from the

equation.

When using only the AB moment conditions in estimation, a choice for H often encountered in practice is

the identity matrix with T − 2 diagonal elements

HAB =



1 0 . . . 0

0 1
...

. . .
...

0

0 . . . 0 1


.

For the AS moment conditions, an identity matrix with T − 3 diagonal elements is frequently used as HAS

(see, e.g., Blundell, Bond, and Windmeijer, 2001; Kripfganz, 2018).
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Finally, when two different sets of moment conditions are employed, a general representation of H is

H =

 A B

B′ C

 ,

where the matrices A, B, and C are chosen depending on the particular moment conditions employed in

GMM estimation. Note that A and C correspond to the expected variance covariance properties within

a set of moment conditions, while B corresponds to the expected covariance across the different sets of

moment conditions and B′ is the transpose.

An estimate for the weighting matrix Ŵ 2 of the two-step GMM estimator (GMM2S) is

Ŵ 2 =

(
1

n
·Z ′ŝ1ŝ′1Z

)−1
, (13)

where ŝ1 denotes the residuals from one-step estimation. When the nonlinear moment conditions are used,

nonlinear optimization techniques are required to obtain coefficient estimates. Per default, GMM estima-

tion by pdynmc is based on numerical optimization. To initialize the optimization procedure, starting values

are drawn for all parameter estimates from a uniform distribution over the interval [-1, 1]. Multistarting

is used to avoid local minima. By default, GMM1S is calculated for 3 different parameter starting value

combinations. The number of multistarts can be adjusted by the user. GMM2S then employs the parameter

estimates obtained by GMM1S as starting values and performs no multistarting. For the optimization pro-

cedure, we rely on the R-package optimr (Nash and Varadhan, 2016). All optimization routines implemented

in optimr are available in pdynmc. From our experience, the Variable Metric method (Fletcher, 1970; Nash,

1990) seems to work satisfactory in the estimation of linear dynamic panel data models. In all settings

encountered while programming the package, the results from this method were close to closed form results

for GMM estimation based on linear moment conditions. The Variable Metric method is named ‘BFGS’ in

optimr11 and serves as the default procedure in pdynmc. This may, however, change in future versions of

pdynmc depending on prospective results and insights – this is especially the case for the nonlinear moment

conditions, which cannot be compared to closed form results. Note that for GMM estimation based on

linear moment conditions, the closed form results are computed and stored along with the optimization

results.

Alternatively to one-step and two-step procedures, GMM estimation can be carried out with the continuously

updating estimator (GMMCU). The GMMCU is an iterative procedure, where the weighting matrix, the

corresponding parameter estimates, and the residuals are updated until either one of two stopping criteria

is attained: The procedure stops, when the change in coefficient estimates from one estimation step to

the next does not exceed a certain pre-specified threshold ztol. Otherwise, GMMCU stops after a pre-

specified number of maximum iterations hiter. Asymptotically, one-step, two-step, and multiple-step GMM

estimation are equivalent – though, differences occur in finite samples and Monte Carlo evidence exists that

the finite sample performance may improve (see, e.g., Hansen, Heaton, and Yaron, 1996). In pdynmc all

three different estimation procedures are available.

11For more details and references on the available optimization methods in optimr see the package documentation

and Nash and Varadhan (2011).
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3.3 Closed form solution

When estimating the linear dynamic panel data model in Equation (3) by GMM based on linear moment

conditions only, numerical optimization methods are not required to obtain coefficient estimates. One-step

estimates θ̂1 are available from:

θ̂1 = (X ′ZŴ 1Z
′X)−1X ′ZŴ 1Z

′y. (14)

The matrix X contains all right-hand side variables12 from Equation (3) and Ŵ 1 is the estimated one-step

weighting matrix from Equation (12). In order to calculate the two-step coefficient estimates θ̂2, Ŵ 1 needs

to be replaced by the estimated two-step weighting matrix Ŵ 2:

θ̂2 = (X ′ZŴ 2Z
′X)−1X ′ZŴ 2Z

′y. (15)

Two comments on the closed form expressions may be helpful here. First, recall from Equations (12) and

(13) that the one-step- and two-step weighting matrices depend on the number of observations contained

in the sample n. Considering the closed form for the coefficient estimates in greater detail reveals that for

Equations (14) and (15), the factor n cancels from both expressions. Second, as mentioned in the previous

section, updating the weighting matrix and computing coefficient estimates does not necessarily have to

stop at the second step. The procedure can be iterated until either one of the stopping criteria is reached.

4 Standard errors and inference

4.1 Standard errors

Asymptotic one-step standard errors for the estimated coefficients can be obtained by taking the square

root of the main diagonal elements of the estimated one-step variance covariance matrix

Ω̂(θ̂1) = n · (X ′ZŴ 1Z
′X)−1σ̂2

1 , with σ̂2
1 = ŝ′1ŝ1 ·

1

N − p
. (16)

In the formula, N is the number of observations available for estimation (i.e., the cross section dimension

times the time series dimension minus the number of missing observations), p denotes the number of esti-

mated coefficients, and ŝ1 are residuals from one-step GMM estimation (see Doornik, Arellano, and Bond,

2012). As stated in Windmeijer (2005), robust one-step standard errors are available from

Ω̂r(θ̂1) = n·(X ′ZŴ 1Z
′X)−1X ′ZŴ 1Ŵ

−1
2 Ŵ 1Z

′X· (17)

(X ′ZŴ 1Z
′X)−1,

while asymptotic two-step standard errors can be computed from

Ω̂(θ̂2) = n · (X ′ZŴ 2Z
′X)−1. (18)

12Note that – depending on the moment conditions employed in estimation – all matrices and vectors given in the

following may contain observations in levels and/or first differences.
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Since asymptotic two-step GMM standard errors for the estimated coefficients exhibit a downward bias in

small samples, they can, however, be substantially lower than one-step GMM standard errors (see, e.g.,

Arellano and Bond, 1991). Windmeijer (2005) relates the bias to the dependence of the two-step weighting

matrix on parameter estimates (the one-step estimates) and proposes an analytic correction of the two-step

standard errors based on a first order Taylor-series expansion:

Ω̂c(θ̂2) =F +D
θ̂2,Ŵ 2

F + FD′
θ̂2,Ŵ 2

(19)

+D
θ̂2,Ŵ 2

Ω̂r(θ̂1)D′
θ̂2,Ŵ 2

,

where the expression F is defined as

F = n · (X ′ZŴ 2Z
′X)−1.

This expression is equivalent to the estimated uncorrected two-step variance covariance matrix of the co-

efficient estimates Ω̂(θ̂2) in Equation (18). The computation of the correction D
θ̂2,Ŵ 2

is involved when

multiple parameters are estimated. For a single parameter, it equals

D
θ̂2,Ŵ 2

= − 1

n
· FX ′ZŴ 2

∂Ŵ
−1

(θ)

∂θ

∣∣∣∣∣
θ=θ̂1

Ŵ 2Z
′ŝ2.

The vector ŝ2 denotes the two-step residuals and the first derivative of the weighting matrix for two-step

GMM estimation evaluated at θ̂1 can be calculated from

∂Ŵ
−1

(θ)

∂θ

∣∣∣∣∣
θ=θ̂1

= − 1

n
·Z ′(Xŝ′1 + ŝ1X

′)Z.

Two remarks on the computation of the standard errors might be helpful here: First, similar to the compu-

tation of the closed form expressions for the coefficient estimates, the formulas in the Equations (17), (18),

and (19) do not depend on the number of cross sectional units in the data set n, as the term cancels out

with the 1/n from Ŵ 1 and Ŵ 2. Equation (16) depends on the total number of observations available in

the data set by the degrees of freedom correction in the calculation of σ̂2
1s. This affects the calculation of

the standard errors when there are missing observations. Second, note that an alternative to the analytic

correction of the two-step standard errors proposed by Arellano and Bond (1991) is to replace the standard

errors of the second estimation step by those from the first step.

4.2 Specification testing

Arellano and Bond (1991) suggest a test for second order serial correlation in the idiosyncratic remainder

components. The test is generalized to higher orders j by Arellano (2003) and can be used as a specification

test in the estimation of linear dynamic panel data models. The reasoning is that, although, first order

serial correlation is present in the idiosyncratic remainder components for GMM estimation based on first

differenced equations13, no higher order autocorrelation should prevail. The serial correlation test of Arellano

13First order serial correlation in the εi,t is introduced by first differencing. Even when the εi,t in levels are i.i.d.,

the first differenced εi,t are correlated (for a derivation see, e.g., Fritsch, 2019).
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and Bond (1991) boils down to checking if the deviation of the covariance of the residuals of period t with

the residuals of period t− j from zero is large enough to indicate that j-th order serial correlation might be

present in the idiosyncratic remainder components. The null hypothesis of the test is that there is no serial

correlation in the εi,t. The corresponding test statistics are defined as

Tmj =
r̂j
σ̂r̂j

, with Tmj

a∼ N (0, 1),

where σ̂r̂j is the standard error of the j-th order autocovariance of the residuals r̂j . For the linear dynamic

panel data model specified in Equation (3), this autocovariance of the residuals is the sample equivalent to

rj =
1

T − 3− j
·

T∑
t=4+j

rt,j , with rt,j = E(∆si,t∆si,t−j),

the average j-th order autocovariance of the idiosyncratic remainder components (see Arellano, 2003). As

detailed by Arellano and Bond (1991) and Doornik, Arellano, and Bond (2012), the corresponding scaled

autocovariance of the residuals can be calculated by

r̂t,j =
1√
n
· ŝ′t ŝt−j ,

where ŝt and ŝt−j are column vectors which contain the residuals from one-step, two-step, or multiple-step

GMM estimation for all cross sectional units at the respective time period; the index at ŝt−j indicates

that the corresponding residuals are lagged j time periods. According to Arellano and Bond (1991), the

estimated variance of the j-th order autocovariance of the residuals is available from

σ̂2
r̂j =

1

n
·ŝ′t−j Ω̂(ŝ)ŝt−j − 2 · ŝ′t−j X(X ′ZŴZ ′X)−1X ′ZŴZ ′Ω̂(ŝ)ŝt−j +

ŝ′t−j XΩ̂(θ̂)X ′ŝt−j .

Note that the vectors of residuals ŝ, ŝ−j and the matrices Ŵ , Ω̂(ŝ), and Ω̂(θ̂) depend on the actual

estimation step and the latter two matrices also depend on the estimated type of variance covariance

matrix (i.e., robust or asymptotic for one-step estimation; Windmeijer-corrected or asymptotic for two-step

estimation). All corresponding indices are dropped here in order to provide one general formula instead of

the four specific ones.

4.3 Overidentifying restrictions testing

When the system of equations from which the model parameters are estimated by GMM is overidentified

(i.e., when the number of moment conditions exceeds the number of parameters to be estimated), it is

possible to assess the validity of the overidentifying restrictions by the Sargan test (Sargan, 1958). The

presumed null hypothesis is that the overidentifying restrictions are valid. According to Arellano and Bond

(1991) and Doornik, Arellano, and Bond (2012), the test statistic of the Sargan test can be computed from

TS = n · ŝ′1ZŴ 1Z
′ŝ1 · σ̂−21 , with TS

a∼ χ2(m− p).
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Under suitable conditions, which ensure asymptotic normality of the GMM estimator14 and the additional

assumption of conditional homoscedasticity, the test statistic is asymptotically χ2-distributed with m − p

degrees of freedom; m equals the number of instruments employed in estimation (see, e.g., Hayashi, 2000).

An alternative test statistic – where a finite fourth moments assumption is imposed instead of conditional

homoscedasticity – is the J-test (Hansen, 1982). The J-test statistic results from replacing Ŵ 1 in the above

formula by Ŵ 2, the one-step residuals by the two-step residuals, and dropping the multiplication with σ̂−21 :

TJ = n · ŝ′2ZŴ 2Z
′ŝ2, with TJ

a∼ χ2(m− p).

The idea underlying the test statistics TS and TJ is, that when the moment conditions are valid, the sample

analogues of these conditions should be close to zero. A large value of the test statistic indicates that some

of the moment conditions may be invalid, that some of the model assumptions may be incorrect, or both

(see, e.g., Hayashi, 2000).

Variations of the two tests allow to check the validity of subsets of moment conditions. These tests are also

referred to as ‘difference-in-Hansen’/‘difference-in-Sargan’ tests (see, e.g., Roodman, 2009), ‘incremental

Hansen’/‘incremental Sargan’ tests (see, e.g., Arellano, 2003), or C-statistics (see, e.g., Hayashi, 2000). The

test statistic is obtained by carrying out the unrestricted estimation and the estimation under the null

hypothesis, computing the desired test statistic for both estimations, and then taking the difference of the

two test statistics. This difference is asymptotically χ2-distributed with TJH1
− TJH0

degrees of freedom,

where TJH1
are the degrees of freedom of the unrestricted model and TJH0

those of the restricted one (see

Hayashi, 2000).

4.4 Testing linear hypotheses

The Wald test is one possibility to test general linear hypotheses of the form

H0 : Rθ = r,

where the matrix R is a c×p matrix, which selects the elements of the p×1 vector of population parameters

θ required to express the left-hand side of the c equations of the null hypothesis (i.e., the restrictions under

the null) and the vector r is a c × 1 vector that states the right-hand side of the equations. Tests of

three different standard null hypotheses are currently available in pdynmc: (a) all population parameters

corresponding to the right-hand side variables of the linear dynamic panel data model are zero jointly, (b)

all population parameters corresponding to the lagged-dependent and non-lagged dependent explanatory

variables are zero jointly, and (c) all population parameters corresponding to the time dummies are zero

jointly.

14For Theorems, Propositions, and extensive discussions for GMM estimators see Newey and McFadden (1994)

and Hayashi (2000). A discussion of GMM estimation of linear dynamic panel data models and the underlying

assumptions is provided by Fritsch (2019).
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In case of one-step GMM estimation, the Wald statistic can be obtained from

TW = n · (Rθ̂1 − r)′
(
R Ω̂(θ̂1) R′

)−1
(Rθ̂1 − r), with TW

a∼ χ2(c).

In order to calculate the Wald statistic for two-step GMM estimation, the vector of parameter estimates θ̂1

and the estimated variance covariance matrix of the parameter estimates Ω̂(θ̂1) need to be replaced by their

equivalents from two-step estimation. Under suitable conditions15, the Wald statistic TW is asymptotically

χ2-distributed with c degrees of freedom (see Hayashi, 2000). The estimated variance covariance matrix

of coefficient estimates to be used in both calculations may be either the non-robust versions stated in

Equations (16) and (18) or the robust/corrected versions of the matrix from Equations (17) and (19). The

equivalent matrices need to be chosen in multiple-step GMM estimation to obtain the corresponding Wald

statistic. As usual, a large value of the Wald statistic casts doubt on the null hypothesis.

5 Related software and R-packages

GMM estimation of linear dynamic panel data models based on linear moment conditions is available in

a number of software environments and packages such as Gauss, Ox, R, and Stata. We highlight the

particularities of a few selected implementations here.

The Gauss and Ox implementations, which are both named DPD (Arellano and Bond, 1988; Doornik, Arel-

lano, and Bond, 2012), represent an important reference for later software. The packages include the

computation of one-step and two-step closed form GMM estimators and standard specification testing such

as overidentifying restrictions tests, serial correlation tests, and Wald tests. Some estimators for static panel

data models like the within estimator and feasible generalized least squares estimation are also available.

In Stata (e.g., Stata Corporation, 2011), the command xtabond2 (Roodman, 2009a) is a popular choice for

GMM estimation of linear dynamic panel data models based on linear moment conditions. The command

calculates the closed form solution for the estimators and is accompanied by extended model diagnostics

to assess the validity of certain subsets of moment conditions and the overall specification. Employing

nonlinear moment conditions and GMMCU are not supported. The recently contributed command xtdpdgmm

(Kripfganz, 2018) enables the user to include nonlinear moment conditions into the analysis. The command

does not allow for GMMCU and the numerical optimization of the GMM objective function is based on a

Gauss-Newton technique.

In R (R Core Team, 2019), the packages plm (Croissant and Millo, 2008) and panelvar (Sigmund and Ferstl,

2019) implement the functionality available in xtabond2 with some additional features. For example, the

package panelvar allows the user to perform lag selection based on information criteria, structural analysis

based on impulse response functions, the computation of corresponding bootstrapped confidence intervals,

and allows for GMMCU. The package plm provides a variety of functions for the estimation of static and

linear panel models such as the within estimator, different random effects estimators, feasible generalized

15See Newey and McFadden (1994) and Hayashi (2000) and the discussion in Fritsch (2019).
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least squares estimation, and a number of different specification tests. The function pgmm is specifically

designed to estimate linear dynamic panel data models – GMMCU is not implemented. Both R packages

do not allow to incorporate nonlinear moment conditions into the analysis.

6 Sample session

The functionality of pdynmc16 is illustrated by replicating some of the empirical results in Arellano and

Bond (1991). Additionally, we show how to incorporate the linear AB and the nonlinear AS moment

conditions into the analysis. We explain all arguments which need to be set to reproduce the results and

point out some alternative options. We also draw comparisons between pdynmc, the Stata implementations

xtabond2, xtdpdgmm, and the pgmm function in the R-package plm – where we are aware of differences

between the implementations.

The data set employed in Arellano and Bond (1991) is an unbalanced panel of n = 140 firms located in

the United Kingdom which are observed over a maximum of T = 9 time periods. The authors investigate

employment equations and consider the dynamic specification

ni,t =α1ni,t−1 + α2ni,t−2+ (20)

β1wi,t + β2wi,t−1 + β3ki,t + β4ki,t−1 + β5ki,t−2 + β6ysi,t + β7ysi,t−1 + β8ysi,t−2+

γ3d3 + · · ·+ γT dT + ηi + εi,t, i = 1, ..., n; t = 3, ..., T.

In the equation, i denotes the firm and t is the time series dimension. The natural logarithm of employment

n is explained by its first two lags and the further explanatory variables natural logarithm of wage w, natural

logarithm of capital k, natural logarithm of output ys, and their lags of order up to one (for w) or two

(for k and ys). The variables d3, . . . , dT are time dummies with corresponding coefficients γ3, . . . , γT ; the

unobserved individual-specific effect is represented by η, and ε is an idiosyncratic remainder component. The

goal is to estimate the lag parameters α1 and α2 and the coefficients of the further explanatory variables βj ,

with j = 1, . . . , 8, while controlling for (unobserved) time effects and accounting for unobserved individual-

specific heterogeneity.

6.1 GMM estimation with HNR moment conditions

When reproducing the results in Table 4 on p.290 of Arellano and Bond (1991) with pdynmc, the model

structure of the underlying Equation (20) can be specified by:

+ varname.i = "firm", varname.t = "year",

16All results contained in this section are reproducible with the functions provided in the accompanying R-code.

The estimation function is approximately 2,000 lines of code and provides a flexible implementation of the estimation

of linear dynamic panel data models with linear and nonlinear moment conditions. Most of the options described in

the text are already fully implemented. Additionally, functions to carry out the tests in Section 4.1 are also provided.
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+ varname.y = "n", lagTerms.y = 2,

+ fur.con = TRUE, varname.reg.fur = c("w", "k", "ys"),

+ lagTerms.reg.fur = c(1,2,2),

+ include.dum = TRUE, varname.dum = "year"

The arguments in lines one and two set the individual (‘varname.i’) and time series dimension (‘varname.t’),

specify the dependent variable (‘varname.y’), and the number of lags of the dependent variable to be in-

cluded as explanatory variables (‘lagTerms.y’). The third line denotes that the model contains further non-

lagged dependent explanatory variables (‘fur.con’) and gives the names of these variables (‘varname.reg.fur’)

– while the fourth line specifies their respective lag structure (‘lagTerms.reg.fur’). Note that the first

element of the vector denoting the lag structure corresponds to the first element of the vector with the

variable names, the second element to the second, and so on. Also note that all names given in the vectors

that refer to variables in the data set need to have the same names as in the data set. Line five includes

time dummies into the model (‘include.dum’) and indicates the variable in the data set from which the

dummies shall be derived (‘varname.dum’). Note that time dummies can be constructed from one or multi-

ple variables by pdynmc by simply passing a scalar or vector with the respective variable names in the data

to ‘varname.dum’.

Including the following arguments in the function call

+ use.mc.diff = TRUE, include.y = TRUE, include.x = FALSE

ensures that the HNR moment conditions (‘use.mc.diff’) derived from the lagged dependent variable

(‘include.y’) are employed, while none are derived from the further non-lagged dependent explanatory

variables (‘include.x = FALSE’). The latter argument implies that the non-lagged dependent explanatory

variables in the model are assumed to be exogenous and instrument themselves.

Non-lagged dependent explanatory variables and time dummies can be incorporated by

+ fur.con.diff = TRUE, dum.diff = TRUE

into the equations in first differences. The former argument includes the non-lagged dependent explanatory

variables and the latter the time dummies.

Specifying the matrix H in Equation (12), which governs the structure of the one-step weighting matrix,

and carrying out one-step estimation can be achieved by setting:

+ w.mat = "iid.err", estimation = "onestep"

Choosing the option ‘iid.err’ uses the matrixHHNR proposed by Arellano and Bond (1991). Alternatively,

an identity matrix can be employed for H by the option ‘identity’.

The table contains the estimation results when specifying all arguments as stated in this section and repro-

duces the results in Table 4, column (a1) on p.290 of Arellano and Bond (1991).
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Table 1: Column (a1) of Table 4 in Arellano and Bond (1991)

Estimate Std.Err.rob z.rob Pr(>|z.rob|)

L1.n 0.68623*** 0.14459 4.74600 < 0.001

L2.n -0.08536 0.05602 -1.52400 0.12751

w -0.60782*** 0.17821 -3.41100 < 0.001

L1.w 0.39262* 0.16799 2.33700 0.01944

k 0.35685*** 0.05902 6.04600 < 0.001

L1.k -0.05800 0.07318 -0.79300 0.42778

L2.k -0.01995 0.03271 -0.61000 0.54186

ys 0.60851*** 0.17253 3.52700 < 0.001

L1.ys -0.71116** 0.23172 -3.06900 0.00215

L2.ys 0.10580 0.14120 0.74900 0.45386

1979 0.00955 0.01029 0.92900 0.35289

1980 0.02202 0.01771 1.24300 0.21387

1981 -0.01177 0.02951 -0.39900 0.68989

1982 -0.02706 0.02928 -0.92400 0.35549

1983 -0.02132 0.03046 -0.70000 0.48393

1984 -0.00770 0.03141 -0.24500 0.80646

Equations in first differences: L (2/8) .n,D.w, L.D.w,D.k,

L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984

* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null

that the coefficient is equal to zero)

Table 2: Column (a2) of Table 4 in Arellano and Bond (1991)

Estimate Std.Err.corr z.corr Pr(>|z.corr|)

L1.n 0.62871** 0.19341 3.25100 0.00115

L2.n -0.06519 0.04505 -1.44700 0.14790

w -0.52576*** 0.15461 -3.40100 < 0.001

L1.w 0.31129 0.20300 1.53300 0.12528

k 0.27836*** 0.07280 3.82400 < 0.001

L1.k 0.01410 0.09246 0.15200 0.87919

L2.k -0.04025 0.04327 -0.93000 0.35237

ys 0.59192*** 0.17309 3.42000 < 0.001

L1.ys -0.56599* 0.26110 -2.16800 0.03016

L2.ys 0.10054 0.16110 0.62400 0.53263

1979 0.01122 0.01168 0.96000 0.33706

1980 0.02307 0.02006 1.15000 0.25014

1981 -0.02136 0.03324 -0.64200 0.52087

1982 -0.03112 0.03397 -0.91600 0.35967

1983 -0.01799 0.03693 -0.48700 0.62626

1984 -0.02337 0.03661 -0.63800 0.52347

Equations in first differences: L (2/8) .n,D.w, L.D.w,D.k,

L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984

* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null

that the coefficient is equal to zero)

20



Changing the argument ‘estimation’ to ‘twostep’ yields the two-step GMM coefficient estimates from

Table 4, column (a2) on p.290 of Arellano and Bond (1991). Note that the standard errors presented in

Table 2 are based on the Windmeijer-correction and deviate from the conventional standard errors reported

in Arellano and Bond (1991). The standard errors from the original analysis can be reproduced by setting:

+ std.err = "unadjusted"

Alternatively, this option can be set to ‘onestep’, which reports one-step standard errors for the two-step

coefficient estimates. Computing robust (for GMM1s) or Windmeijer-corrected (for GMM2s) standard

errors requires setting ‘std.err’ to ‘corrected’ (the default in pdynmc).

One-step, two-step, and GMMCU (accessible by setting the argument ‘estimation’ to ‘cue’) estimation

in pdynmc is carried out by numerical optimization of the GMM objective function given in Equation

(11). Since a closed form solution exists for the estimator when employing only linear moment conditions,

numerical optimization is not required and can be switched off by setting:

+ opt.meth = "none"

Different capabilities for testing hypotheses about the population parameters are available in pdynmc.

Among them are the tests for serial correlation in the idiosyncratic remainder components proposed by

Arellano and Bond (1991), Sargan tests, Hansen tests, and Wald tests. In the following, carrying out

these tests and interpreting the results is briefly illustrated based on the two-step GMM estimation results

presented in Table 2.

Employing the test for second order serial correlation of Arellano and Bond (1991) described in Section 4.2

yields:

Serial correlation test of degree 2

data: GMM Estimation; H0: no serial correlation of order 2 in epsilon

normal = -0.35166, p-value = 0.7251

The test does not reject the null hypothesis at any plausible significance level and does not provide any

indication that the model specification might be inadequate. The test statistic and p-value are identical to

xtabond2 and pgmm.

Computing the Hansen J-test of the overidentifying restrictions described in Section 4.3 gives:

J-Test of Hansen

data: GMM Estimation; H0: overidentifying restrictions valid

chisq = 31.381, df = 25, p-value = 0.1767

The test does not reject the overidentifying restrictions and does not provide any indications that the validity

of the instruments employed in estimation may be in doubt. Comparing the results to xtabond2 shows that
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the degrees of freedom and the p-value differ. We consider 25 degrees of freedom to be the appropriate

number here, as 41 instruments are employed in estimation to obtain 16 coefficient estimates. It seems

that the function xtabond2 does not correct the degrees of freedom for the number of dummies dropped in

estimation17. The difference in the p-value is due to the differences in the degrees of freedom. Our results

are equivalent to the results of pgmm for the overidentifying restrictions test. In pgmm, the above test is

referred to as ‘Sargan test’.

For the Sargan test we get:

Sargan Test

data: GMM Estimation; H0: overidentifying restrictions valid

chisq = 54.756, df = 25, p-value = 0.0005297

Contrary to the J-Test of Hansen, the Sargan test rejects the null hypothesis and raises doubts about the

instrument set. The results of both tests should, however, be interpreted with caution, as the Sargan test

statistic is inconsistent when heteroscedasticity is present and the power of the J-Test is weakened by the

presence of many instruments (see Roodman, 2009a). Comparing the result to xtabond2 reveals differences

besides the degrees of freedom and the corresponding p-value: The test statistics are not identical. The

differences stem from the calculation requiring a correction of the degrees of freedom. While we correct

the number of observations available in estimation for missing values in the case of an unbalanced panel

data set, xtabond2 does not. Additionally, xtabond2 seems to use the number of instruments employed in

estimation to correct the degrees of freedom without adjusting for the time dummies dropped in estimation,

while we make this adjustment.

For the Wald test illustrated in Section 4.4, consider the null hypothesis that the population parameters of

all coefficients included in the model are zero jointly:

Wald test

data: GMM Estimation; H0: beta = 0; tested model parameters: all

chisq = 1104.7, df = 16, p-value < 2.2e-16

The test rejects the null hypothesis. Comparing the test result to the implementation of the test in xtabond2

– again – reveals differences concerning the degrees of freedom. We consider 16 to be the appropriate

number of degrees of freedom here, since this corresponds to the number of estimated parameters. As

noted previously, the differences seem to stem from xtabond2 not adjusting the degrees of freedom for the

17Dummies are dropped by the estimation routine in case of high collinearity.
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dummies dropped in estimation. Alternative hypotheses that can be tested via the Wald test in pdynmc are

that all slope parameters are zero jointly and that all parameters corresponding to the time dummies are

zero jointly.

6.2 GMM estimation with HNR and AB moment conditions

When the ‘constant correlated effects’ assumption stated in Equation (9) holds, the HNR moment conditions

from equations in differences employed in Section 6.1 can be extended by the AB moment conditions from

equations in levels. The AB moment conditions are particularly useful for data generating processes, which

are highly persistent (Blundell and Bond, 1998). In this case, identification by the HNR moment conditions

from equations in levels may fail and GMM estimation based on HNR moment conditions is documented to

possess poor finite sample performance (see, e.g., Blundell and Bond, 1998; Blundell, Bond, and Windmeijer,

2001; Bun and Sarafidis, 2015).

In pdynmc, the AB moment conditions from equations in levels can be incorporated by:

+ use.mc.diff = TRUE, use.mc.lev = TRUE

In principle, both, the time dummies and the further explanatory variables can be included in the equations

in first differences and the level equations. It is recommended, though, to include the dummies only in one

of the equations, as it can be shown that incorporating them in both equations renders one set of dummies

redundant for estimation – while for the non-lagged dependent explanatory variables, this equivalence does

not hold.18 The arguments that govern accommodating non-lagged dependent explanatory variables and

time dummies which instrument themselves in the levels equations are:

+ fur.con.lev = TRUE, dum.lev = TRUE

Using these arguments together with the earlier specified ones – except for setting ‘dum.diff = FALSE’ –

leads to the time dummies being included in the level equations and the further explanatory variables being

included in both equations.

In order to obtain coefficient estimates, a decision about the matrix H in the one-step weighting matrix

is required. When using the HNR and AB moment conditions, the decision about H effectively involves

specifying the matrices A, B, and C in the general structure given in Section 3.2. As mentioned, the

diagonal elements A and C reflect the expected variance covariance properties within a set of moment

conditions, while B reflects the expected covariances across different sets of moment conditions. In the

given setting, A corresponds to the variance covariance properties of the HNR moment conditions, C to

those of the AB moment conditions, and B to those across the HNR and AB moment conditions. Three

different options are currently available in pdynmc to set up the weighting matrix ‘w.mat’: ‘iid.err’,

18Note that this is the case in balanced panels. The results may also not be numerically identi-

cal across function calls for different choices of the one-step weighting matrix. For a discussion, see

https://www.statalist.org/forums/forum/general-stata-discussion/general/1357268-system-gmm-time-dummies.

23



‘identity’, and ‘zero.cov’. The first option leads to HHNR being used for A, an identity for C, and a

matrix B, such that BB′ = HHNR. Setting ‘w.mat’ to ‘identity’ leads to an identity matrix being used

for the diagonal matrices A and C and an adequately dimensioned matrix B with 1 on the diagonal19.

When using the option ‘zero.cov’, the matrices A and C are as for option ‘iid.err’, but B is set to a null

matrix. In case nonlinear moment conditions are used, the part of H which corresponds to the nonlinear

moment conditions is set to an identity for all choices of ‘w.mat’. All elements of the matrices containing

the expected covariance properties of the nonlinear moment conditions with other moment conditions are

always set to zero.

Table 3: Arellano and Bond (1991) estimation with AB moment conditions

Estimate Std.Err.corr z.corr Pr(>|z.corr|)

L1.n 1.11650*** 0.05192 21.50500 < 0.001

L2.n -0.11352* 0.04764 -2.38300 0.01717

L0.w -0.44169** 0.15175 -2.91100 0.00360

L1.w 0.42159** 0.15528 2.71500 0.00663

L0.k 0.28618*** 0.04751 6.02400 < 0.001

L1.k -0.16474* 0.06589 -2.50000 0.01242

L2.k -0.12321** 0.04250 -2.89900 0.00374

L0.ys 0.55793** 0.17651 3.16100 0.00157

L1.ys -0.67392** 0.21707 -3.10500 0.00190

L2.ys 0.13372 0.14344 0.93200 0.35134

1978 -0.05313 0.35746 -0.14900 0.88155

1979 -0.03697 0.35698 -0.10400 0.91717

1980 -0.01933 0.35429 -0.05500 0.95614

1981 -0.05791 0.34696 -0.16700 0.86737

1982 -0.04334 0.34512 -0.12600 0.89973

1983 -0.01818 0.34583 -0.05300 0.95773

1984 -0.02815 0.34914 -0.08100 0.93544

Equations in first differences: L (2/8) .n,D.w, L.D.w, L2.D.w,

D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys

Equations in levels: L (1/7) .D.n,w, L.w, L2.w, k, L.k, L2.k,

ys, L.ys, L2.ys, 1978− 1984

* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null

that the coefficient is equal to zero)

The results presented in Table 3 are the two-step estimates of column (a2) of Table 4 in Arellano and Bond

(1991) extended by the AB moment conditions. All arguments are specified as described above. Including

the AB moment conditions into the analysis leads to substantial changes in the coefficient estimates of

the first lag of the dependent variable. Note that the results indicate a markedly higher persistence of

employment and render including two lags of the dependent variable questionable (Blundell and Bond,

1998, e.g., estimate a version of the equation which contains only one lag of all explanatory variables). Note

that the coefficient estimates of the explanatory variables, besides the first lag of the dependent variable,

19Note that the matrix B is not necessarily a quadratic matrix.
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appear to be similar across estimations.

Equivalent results to Table 3 can be obtained from the pgmm function in the plm-package – besides some

minor numerical differences at the fifth digit. When replicating the results with xtabond2, differences in the

implementations become obvious: The instrument set for the AB moment conditions is extended in similar

fashion to the HNR moment conditions in xtabond2, while this is not the case in pgmm. An argument is

available in pdynmc to extend the instrument set as in xtabond2:

inst.stata = TRUE

Due to the reasons described in Section 2.3, this argument is set to FALSE per default. When setting the

option to ‘TRUE’, the results from xtabond2 and pdynmc are very close – but not identical. The reason

for the differences seems to be the instrument set, as xtabond2 reports a lower instrument count. When

contrasting the instrument matrices used by xtabond2 and pdynmc, though, it appears that both functions

employ the exact same instruments. It is currently unclear to us from where the difference in the results

emerges.

6.3 GMM estimation with HNR and AS moment conditions

Recall, that the linear AB moment conditions from equations in levels comprise the nonlinear AS moment

conditions and render them redundant for estimation (Blundell and Bond, 1998; a derivation is provided in

Fritsch, 2019). Both sets of moment conditions may be useful in GMM estimation when the lag parameter

is close to unity and it can be shown that extending the HNR moment conditions by either the AB- or the

AS moment conditions may identify the lag parameter – even when the individual moment conditions fail

to do so (Bun and Kleibergen, 2014; Gorgens, Han, and Xue, 2016). The AB moment conditions require the

‘constant correlated effects’ assumption, while the AS moment conditions only require standard assumptions

to hold. Therefore, the latter may be useful in situations where the ‘constant correlated effects’ assumption

is not available and the statistician aims to investigate a highly persistent dynamic process with a structure

similar to Equation (3). In pdynmc, including nonlinear moment conditions into the analysis is available

via:

+ use.mc.nonlin = TRUE

7 Concluding remarks

The R-package pdynmc provides a function to estimate linear dynamic panel data models. The implemen-

tation allows for general lag structures of the explanatory variables, which may encompass lags of the

dependent variable and further non-lagged dependent explanatory variables. For estimation, linear and

nonlinear moment conditions are derived from the model assumptions; further controls and external instru-

ments (if available) may also be added. Estimation is carried out by numerical optimization of the GMM
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objective function. Corresponding closed form solutions are computed – where possible – and stored be-

sides the results from numerical optimization. The estimation routine can handle balanced and unbalanced

panel data sets and provides one-step-, two-step-, and continuously updating estimation. Accounting for

(unobserved) time-specific effects is possible by including time dummies; alternatively, both sides of the

equation can be transformed such that the time-specific heterogeneity is partialled out. The partialling

out option is experimental at the moment. We plan to investigate the effects and implications of this way

of dealing with unobserved time-specific heterogeneity in greater detail in the future. Different choices for

the weighting matrix, which guides the aggregation of moment conditions in one-step GMM estimation are

available. Concerning the computation of standard errors for the coefficient estimates, the following options

are currently available in pdynmc: non-robust one- and two-step standard errors and robust one-step- and

Windmeijer-corrected two-step standard errors. Some standard hypothesis and specification tests are also

available. Among them are Wald tests, overidentifying restrictions tests and a test for serial correlation in

the idiosyncratic remainder components.

We plan to extend the package by the following features in the future:

• Provide a formula syntax as an alternative to specify the linear dynamic panel data model and the

instruments to be used in estimation.

• Incorporate further diagnostics and tests to assess the validity of the estimated specifications and

the underlying moment conditions and assumptions (e.g., testing the ‘constant correlated effects’

assumption and testing for structural breaks).

• Add computation of confidence and prediction intervals.

• Facilitate choosing an adequate dynamic specification by lag selection techniques.

• Include moment selection capabilities based on an appropriate criterion into GMM estimation which

allow to remove weak instruments/moment conditions.

• Expand the possible choices for the one-step weighting matrix by, e.g., the proposition in Kiviet

(2007b) for GMM estimation based on linear HNR- and AB moment conditions.

• Allow further types of moment conditions; an example are moment conditions derived from assump-

tions about second (alternatively, or additionally: third, fourth, . . . ) moments of the yi,t process

(e.g., homoscedasticity as mentioned in Ahn and Schmidt, 1995)

• Enable the user to choose time period T instead of t as reference period for all moment conditions.

• Implement the IV estimator solely based on the nonlinear moment conditions proposed by Pua,

Fritsch, and Schnurbus (2019a) and Pua, Fritsch, and Schnurbus (2019b).
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