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Individual Investors and Suboptimal Early Exercises in the

Fixed-Income Market

Abstract

This paper is the first to analyze and value early exercises of Individual Investors in fixed-

income investment products. Assuming decision and transaction costs we consider that a

continuous decision-making on holding or exercising is not optimal anymore and propose a

new approach to modeling exercise decisions, which endogenously determines the optimal

decision strategy. Calibrating our model to a unique data set of about 880,000 early exer-

cises in non-tradable putable bonds over a time period of 13 years indicates that Individual

Investors (i) act very heterogeneously, (ii) behave as if they face significant individual trans-

action and decision costs, (iii) react sluggishly, and that (iv) exogenous effects such as taxes

or investors’ desire for liquidity additionally influence early exercise behavior.

Keywords: decision strategy; decision costs; transaction costs; putable bond

JEL classification: G10, G12, G13



1 Introduction

The right to exercise or redeem early before maturity, is a common feature of many investment

and credit products for Individual Investors, such as savings bonds, stock and index options,

mortgages or other financial innovations. However, while Individual Investors’ trading and ex-

ercise behavior has been researched extensively with regard to stocks, equity index options and

mortgages, surprisingly little is known about Individual Investors’ use of options and derivatives

on fixed-income markets.1 This is particularly remarkable as Individual Investors’ portfolios

comprise interest-earning assets much more often than equity products (for Germany: Statistis-

ches Bundesamt, 2010; for the U.S.: United States Census Bureau, 2010; for the U.K.: Office

for National Statistics, 2012).

With this paper we aim to fill this gap in the current literature and present a theoretical

and empirical analysis of Individual Investors’ early exercise decisions in standard fixed-income

products. In doing so we make two major contributions. First, we develop a new rational model

to determine Individual Investors’ early exercise decisions within the standard framework of

risk-neutral derivatives valuation. Second, we present, to the best of our knowledge, the first

comprehensive overview of Individual Investors’ empirical early exercise decisions in putable

bonds (German Federal Saving Notes) over a period of 13 years. Based on this large and unique

data set we calibrate and apply our model. Our results provide new insights in Individual

Investors’ exercise behavior and are—among others—highly relevant for the risk and liquidity

management of issuers of fixed-income products.

In general, it is well known in the literature that investors use early exercise rights “subop-

timally”. They commonly fail to follow the optimal strategy and forgo the theoretically optimal

1As mentioned, a notable exception is the broad strand of literature about prepayment rights in mortgages
and mortgage-backed securities such as, e.g., Schwartz and Toruos (1989), Schwartz and Torous (1992) and Deng
et al. (2000), who propose reduced form models, and, e.g., Dunn and McConnel (1981a,b), Stanton (1995) and
Kalotay et al. (2004), who focus on structural models.
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exercise (e.g., Overdahl and Martin, 1994; Dawson, 1996; Pool et al., 2008; Barraclough and

Whaley, 2012). Instead, a substantial number of investors exercise early but at a time when it

is not rational to do so, or they completely neglect the exercise right (e.g., Gay et al., 1989; Diz

and Finucane, 1993; Finucane, 1997; Engström et al., 2000; Poteshman and Serbin, 2003; Liao

et al., 2013). In addition, the literature provides some empirical evidence that non-professional

investors perform even more poorly in exploiting the option component, compared to other mar-

ket participants (e.g., Poteshman and Serbin, 2003; Barraclough and Whaley, 2012). The main

arguments—besides irrationality—for this suboptimal exercise behavior are individual transac-

tion costs (e.g., Stanton, 1995; Finucane, 1997; Koziol, 2006; Pool et al., 2008), the costs of

learning early exercise rules (e.g., Barraclough and Whaley, 2012; Liao et al., 2013), and the

effort required to continuously monitor the investment (e.g., Gay et al., 1989; Stanton, 1995;

Barraclough and Whaley, 2012; Liao et al., 2013). Regarding transaction costs, it is argued that

the premium for exercising early, i.e. the difference between the exercise and the continuation

value, must not only be positive for an investor but actually exceed the transaction costs in-

curred. Consequently, an exercise right might be used more seldom or differently than predicted

by standard models with no frictions. Learning and monitoring costs are assumed to lead to

non-continuous decision-making, which can result in the neglect of ex-post attractive exercise

opportunities and thus in suboptimal early exercises.

Intuitively, in view of such costs, it is a more rational strategy for an investor holding a

far out of the money early exercise right to let some time pass by before he “invests” in the

next decision regarding holding or exercising, since the currently almost worthless option is not

expected to be in the money very soon. On the other hand, if the early exercise right is currently

close to the money, the same investor will most likely decide to make the next decision on holding

or exercising his option within a short time, because it is more probable that a profitable early
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exercise opportunity will soon occur. Still, such rational decision strategies have so far rarely

been considered in the literature on early exercises of derivatives. Abel et al. (2007), Abel

et al. (2009) and Alvarez et al. (2012) investigate “rational inattention” and the implications

of “observation costs”, but focus on optimal portfolio choices and consumption.2 Most related

to our approach, Stanton (1995) proposes a rational prepayment model for mortgage-backed

securities, where mortgage holders do not re-evaluate their portfolio at every possible time but

only at random, discrete intervals. However, as a key innovation we replace in our model

Stanton’s random component with an endogenously determined, optimal strategy. This optimal

“decision strategy” defines when to make a decision on continuing to hold or on exercising

a financial derivative with an incorporated early exercise right. As part of this strategy, we

consider also potential transaction costs if the derivative is exercised and additionally that costs

may be incurred for each decision (“decision costs”) on holding or exercising.

As a second contribution to the literature, we apply and calibrate our model on a large and

unique data set. Over a sample period from July 1996 to February 2009 we examine about

880,000 early exercises of German Federal Saving Notes (GFSN), a simple fixed-income product

comparable to a putable bond. Focusing on GFSN allows us to analyze the isolated early exercise

behavior of Individual Investors nearly free of any distortions, since these products are almost

exclusively sold to Individual Investors and cannot be traded on a secondary market. This

means that Individual Investors in GFSN only face the problem of deciding whether to hold

or exercise rather than holding, exercising or selling their position as in the case of, e.g., stock

options. Hence, in contrast to similar studies such as those by Poteshman and Serbin (2003) or

Barraclough and Whaley (2012), who focus on early exercises of exchange-traded options, we do

not have to distinguish between different market participants like institutional or retail investors,

2A newer strand of literature on executive stock options such as Carpenter et al. (2010) concentrates also on
optimal exercise strategies that differ from standard models. Still, modeling a rational decision strategy is not
the focus of these studies.
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and can base our calibration on a more comprehensive overview of Individual Investors’ early

exercise decisions.

We observe a very good fit for our model, which we attribute to the endogenous determi-

nation of the optimal exercise strategy that—in contrast to pure empirical approaches (such as

the reduced form models of Schwartz and Toruos, 1989; or Schwartz and Torous, 1992)—allows

also to make rational predictions in changing economic environments, as also pointed out by

Stanton (1995). Moreover, we stress four findings from the calibration: first, our results suggest

that Individual Investors act heterogeneously, which is in line with the observations of, e.g.,

Stanton (1995) for mortgage holders or Koziol (2006) for warrant holders, and with the gen-

eral characterization of Individual Investors’ behavior by Barber and Odean (2011). Second,

a large number of Individual Investors act as if they face significant transaction and decision

costs. Third, many investors behave sluggishly, i.e. they do not exercise at the optimal exercise

opportunity, but with a delay. Yet another significant group of “passive investors” never make

use of their early exercise option, even when it seems strongly advantageous to do so, which is

equivalent to very high transaction or decision costs. Fourth, we identify a stable base exercise

rate, independent of any market movements, and observe some unusual peaks in the empirical

data, which we attribute to both exogenous effects such as need for liquidity or tax-induced

early exercises. Based on our findings we conclude, like, e.g., Poteshman and Serbin (2003) or

Barraclough and Whaley (2012) in the case of equity options, that Individual Investors’ early

exercise decisions in the fixed-income market can clearly differ from the decisions of institutional

investors, which results in a present value advantage due to lower option costs for issuers. For

our sample we estimate this difference between the standard model value and the empirical value

at more than 2%, which is in line with the studies of Stanton (1995) or Koziol (2006), among

others.
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The remainder of the paper is organized as follows. In Section 2, we present our model

and investigate optimal decision and exercise strategies as related to transaction and decision

costs. Section 3 introduces our data set and presents summary statistics on the empirical early

exercises of Individual Investors. In Section 4, we calibrate the model, test the robustness of

our results and estimate the financial advantage for issuers derived from the diverging exercise

strategies of Individual Investors. Section 5 concludes and discusses policy implications.

2 Model

In the following, we consider a derivative with an American early exercise right, for which payoff

at early exercise is reduced by transaction costs and costs arise with every decision to hold

or exercise the derivative (“decision costs”). Since the latter implies that decision-making is

costly for an investor, a continuous decision-making strategy for holding or exercising is no

longer worthwhile. Instead, a rational investor defines after each decision based on all current

information at which upcoming point in time it would be best to make the next decision on the

derivative. This endogenous determination of the optimal “decision strategy” is a key component

of our model.

2.1 Model setup

We consider a continuous-time economy over the time period [0, T ]. Let
(
Ω,F , (Ft)0≤t≤T , Q

)
be

a probability space equipped with a filtration (Ft)t fulfilling the usual conditions, i.e. it is right-

continuous and complete. Q is the equivalent spot martingale measure where the money market

account serves as numéraire. The adapted short rate process is denoted by r(t). We discretize

time into equidistant time steps 0 = t0, ..., tN = T with ti+1 − ti = ∆t. Let T = {t0, ..., tN }.

5



The investor holds a derivative X whose payoff at maturity T is given by XT .3 Additionally,

the derivative can be exercised early in t1, ..., tN−1 with a respective payoff Xti in ti. Note that

we do not have to specify the type of underlying (e.g., stock or bond) and its dynamics. The

only condition we require is that the payoff of the derivative Xti in ti is Fti-measurable, i.e.

given the information up to ti the early exercise payoff or final payoff on the respective date

is known, and integrable. Transaction and decision costs in ti are denoted by TCti and DCti ,

respectively, and are also Fti-measurable and integrable.4

Decision strategy

Our first step is defining the points in time at which the investor decides to make a decision on

the exercise. We call a non-decreasing sequence Γ = (Γn)n=0,...,N of (Fti)-stopping times Ω→ T

a decision strategy and each Γn a decision point, if the sequence fulfills the following conditions:

Γ0 = 0, (1)

Γn < Γn+1 if Γn ̸= tN , (2)

Γn+1 is FΓn-measurable. (3)

Condition (1) simply means that we start today. Condition (2) says if a decision is made at

decision point Γn the next decision point lies in the future, given that Γn is not yet the end of

the considered period.5 In condition (3), FΓn is the σ-algebra associated with the stopping time

3For the sake of brevity and ease of notation, we do not consider payoffs from the derivative here, such as
coupon payments from bonds, before exercise or maturity. However, these can easily be integrated.

4Transaction and decision costs can be expressed as a fixed sum or as a relative value. Throughout this paper
we work with absolute cost levels, however, our methodology can easily be applied with relative cost definitions.

5As Γ = (Γn) is a non-decreasing sequence, condition 2 implies that if Γn = tN the following decision points
Γn+k also have the value tN . Note that these Γn+k do not provide any new information and could be omitted.
However, allowing the sequence Γ to have always the same length simplifies notation here.
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Γn representing the information available at Γn.6 This condition means that the next decision

point Γn+1 is known at the decision point Γn. For example, today the investor determines the

next decision point Γ1. Next, in Γ1 based on the available information at that point in time, he

determines Γ2, i.e. when to make the next decision, etc.

Exercise strategy

Given a decision strategy Γ , the derivative can only be exercised at the decision points Γn based

on the information associated with Γn, yielding a payoff of XΓn . Exercising the derivative there-

fore means stopping the process (XΓn)n. Based on the decision strategy Γ , we call a function

τ Γ : Ω→ {1, ..., N} an exercise strategy if it is a (FΓn)-stopping time.

Strategy

The investor has to jointly choose both the decision and the exercise strategy. Therefore, we call

a pair
(
Γ , τ Γ

)
a strategy that consist of a decision strategy Γ and a respective exercise strategy

τ Γ . The point in time τ where the investor exercises the derivative is then given by:

τ = Γτ Γ . (4)

Note that τ is an (Fti)-stopping time.7

Optimal strategy and value

Given a strategy
(
Γ , τ Γ

)
, the investor’s cash flow consists of the exercise or final payoff Xτ , the

transaction costs TCτ and the decision costs DCΓn occurring at the decision points until exercise

6I.e. FΓn = {A ∈ F : A ∩ {Γn ≤ ti} ∈ Fti for all ti ∈ T}.
7Note that any strategy determines via (4) a unique (Fti )-stopping time (up to null-sets). On the other hand,

any (Fti )-stopping time τ can be represented via (4), for example by setting Γn = tn and τ Γ = τ . However, this
representation is not necessarily unique as there may be different strategies inducing a specific τ via (4).
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or maturity, i.e. in Γ1, ..., Γτ Γ . We define the sum of the discounted cash flows as X(Γ ,τ Γ ):

X(Γ ,τ Γ ) = exp
(

−
∫ τ

0
r(s)ds

)
(Xτ − TCτ ) −

τ Γ∑
i=1

exp
(

−
∫ Γi

0
r(s)ds

)
DCΓi , (5)

where the first summand of (5) is the discounted payoff from the derivative minus the transaction

costs occurring from the exercise in τ = Γτ Γ . The second summand represents the discounted

decision costs that result from the τ Γ decisions made until the early exercise or maturity date

in τ . Given a specific strategy
(
Γ , τ Γ

)
, standard pricing theory implies that the “value” of the

position equals EQ

(
X(Γ ,τ Γ )

)
.

The rational investor aims at choosing a strategy that maximizes his wealth position. This

means he chooses a strategy
(
Γ , τ Γ

)opt
such that:

EQ
(

X(Γ ,τ Γ )opt

)
= sup

(Γ ,τ Γ )
EQ

(
X(Γ ,τ Γ )

)
(6)

holds. Accordingly, we get V0 = EQ

(
X(Γ ,τ Γ )opt

)
as the value of the derivative in t = 0.

In Appendix A we prove the existence of an optimal strategy
(
Γ , τ Γ

)opt
, show how it can be

constructed and show that the value of the derivative can be calculated via backward induction.

We continue with a solution for the optimal strategy. First, we provide the results on the

construction of the value process Vti via backward induction:

• In tN , i.e. at maturity, set:

VtN = XtN − TCtN − DCtN . (7)
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• Let the value of the derivative be known for each tk > tn. Then the value in tn is:

Vtn = max (Xtn − TCtn , CVtn) − DCtn (8)

with CVtn = max
tk>tn

EQ

(
exp

(
−
∫ tk

tn

r(s)ds

)
Vtk

∣∣∣∣∣Ftn

)
, (9)

where CVtn is the “continuation value” in tn.

• In t0 = 0 set:

V0 = CV0. (10)

Based on this, the optimal strategy
(
Γ , τ Γ

)opt
can be constructed as follows:

• In t0 = 0 set:

Γ0 = 0. (11)

• Assume that the decision point Γn has been constructed. Then the next decision point is:

Γn+1 =


min

(
ti > Γn : CVΓn = EQ

(
exp

(
−
∫ ti
Γn

r(s)ds
)

Vti

∣∣∣FΓn)) for Γn < tN

tN for Γn = tN .

(12)

• The optimal exercise strategy is given by:

τ Γ = min ({i : XΓi − TCΓi ≥ CVΓi , Γi < tN } ∪ {i : Γi = tN }) . (13)

As already stated, a formal proof can be found in Appendix A. In the following, we briefly

describe the procedure and provide economic intuition for the results.

Starting at maturity (7), the value of the derivative equals its payoff minus transaction and

decision costs. In our following analyses, we usually set these costs at zero, i.e. TCtN = DCtN ≡
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0, which we find most plausible, as the payoff at maturity is usually not an investor’s decision

and as it is usually cost-free. For all other points in time tn, equation (8) shows that the

value equals the maximum of the immediate exercise payoff less transaction costs Xtn − TCtn

and the continuation value CVtn , i.e. the derivative value given it is not exercised in tn, minus

decision costs. This is a standard procedure in rational decision-making, also applied in standard

American option pricing theory: investors exercise a derivative if—and only if—the immediate

exercise value minus transaction costs is larger than the continuation value. Note that while the

transaction costs in tn influence the exercise decision in tn, the decision costs in tn do not, as

they occur anyway since a decision on the exercise is made.

The key difference of our model to standard American option pricing is the structure of

the continuation value CVtn (see 9) that equals the maximum of the conditional expectations

of discounted values in tk > tn: EQ
(
exp

(
−
∫ tk

tn
r(s)ds

)
Vtk

∣∣∣Ftn

)
. This is highly intuitive for

the following reason: let us assume the investor is in tn and he is not exercising the derivative,

which implies that he has to make another decision at the next decision point. As he aims

at maximizing his wealth, he will choose that tk as the next decision point that maximizes

the value of his position in tn. Note that the value of the derivative, given tk is the next

decision point, is EQ
(
exp

(
−
∫ tk

tn
r(s)ds

)
Vtk

∣∣∣Ftn

)
, so that the investor will choose that tk that

maximizes this expression. This can also be seen in the structure of the optimal decision strategy

(12): the optimal next decision point is the first upcoming point in time when the respective

expected discounted value equals the continuation value. Finally, equation (13) expresses that

the derivative should be exercised at the first decision point at which the exercise value minus

transaction costs is not smaller than the continuation value or at maturity.

It is clear that the optimal decision strategy strongly depends on decision costs. For example,

if the decision costs are very high at any point in time before maturity, it would be optimal to
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forgo the early exercise opportunity and to choose maturity as the next decision point. In this

case the value of the derivative would equal the value of its European version. If all decision

costs are zero, i.e. decision-making is cost-free, it would be optimal for an investor to make a

decision at each point in time, as he might otherwise miss favorable exercise opportunities by

“skipping over” certain dates. This is also implied by our model, as it is straightforward to show

that in this case the maximum in (9) is always reached in tn+1 so that the continuation value

becomes CVtn = EQ
(
exp

(
−
∫ tn+1

tn
r(s)ds

)
Vtn+1

∣∣∣Ftn

)
implying Γn+1 = tn+1 in (12). Here our

procedure coincides with standard American option pricing models.

We note that our methodology is not restricted to valuing and investigating fixed-income

investments of Individual Investors, as is the focus in the following. Based on the endogenous

determination of an optimal decision and exercise strategy, it is also possible to thoroughly assess

a wide range of derivatives with early exercise rights with relation to transaction and decision

costs, or other financial products where an endogenously modeled decision strategy is required.

2.2 Numerical example and comparative-static analyses

For illustration, we apply our model in the following to analyze a simple fixed-income derivative

under transaction and decision costs. We are mainly interested in the influence of both costs

on (i) the value of the derivative, on (ii) the optimal decision strategy, where we investigate the

average number of decisions and the average duration between two decision points, and on (iii)

the timing of early exercises. Furthermore, we examine the influence of changes in the market

environment (volatility) on these results.

We consider an exemplary putable bond with a maturity of 7 years and a notional amount

of 1 that promises a yearly coupon of 5%, where coupons are accrued and paid at maturity.

In addition, an investor has an early exercise right. In case of early exercise x.y years after
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issuance, he receives the notional amount plus accrued interest, i.e. the exercise value is given

by 1.05x + 0.05y.8

The short rate process r(t) in this numerical exercise is given by the 1-factor-model of Hull

and White (1990), i.e. dr(t) = κ(θ(t) − r(t))dt + σdW (t), where κ is the mean reversion speed,

σ the short rate volatility, W (t) a standard Brownian motion and θ(t) defined according to Hull

and White (1994) to fit the current term structure (see, e.g., Brigo and Mercurio (2006) for

implementation details). In our standard scenario we set κ = 20%, σ = 2.5% and assume the

term structure to be flat at 5%. The latter implies that the hold-to-maturity value of the bond,

i.e. the value of the bond without option, equals par, so the value of the derivative can be no less

than 1. We consider possible transaction costs between 0% and 12% and decision costs between

0% and 2.5%, but assume that both costs are constant for an investor over time and that these

costs do not occur at maturity.

The valuation according to (7) to (10) is carried out via Monte-Carlo simulation with 10,000

runs for each cost combination and a step size of ∆t = 1/12, i.e. we allow for 84 time steps

until maturity using Euler discretization of the short rate process. To compute the conditional

risk-neutral expectation values in (9), we basically follow the least square Monte-Carlo approach

proposed by Longstaff and Schwartz (2001).9 However, in contrast to Longstaff and Schwartz

(2001) we determine at each step not only the conditional expectation values for the next

point in time, but perform regressions for all upcoming steps until maturity, so that we can

identify the time point with the respective highest conditional expectation value.10 To reduce a

potential upward bias in our results (see for details Broadie and Glasserman, 1997), we apply the

interleaving estimator as introduced by Longstaff and Schwartz (2001) and described in detail

8This profile is a simplified version of the type of bonds (Type B GFSN) we analyze empirically in Section 3.
9A detailed analysis of this method is provided in Clément et al. (2002).

10As basis function for the regression we choose the first four monomials and a constant. Testing different forms
of basis function, we find that this choice performs best regarding efficiency and robustness.
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in Glasserman (2004).

Figure 1 presents the valuation results dependent on transaction and decision costs.

[Figure 1 about here.]

As expected, we find the highest value for our derivative with approximately 1.06 in case of zero

transaction and decision costs. Hence, the early exercise right has a value of 1.06 − 1 = 0.06,

which coincides with the results from standard valuation models. On the other end, with very

high transaction and decision costs, the bond value falls to 1, which means the early exercise right

is worthless. For transaction and decision costs between these extremes we recognize in general

a strong negative impact of both costs on the valuation, whereby the results are more sensitive

regarding changes in decision costs. The first economic intuition is that under transaction and

decision costs an investor receives only a reduced payoff at an early exercise and must furthermore

account for the cumulated decision costs arising at each decision. Consequently, there is a trade-

off after every decision between “investing” very soon in another decision on further holding or

exercising the bond and alternatively waiting some time but risking missing out on ex-post

attractive exercise opportunities. Naturally, an investor chooses here the strategy, as described

in (12), that maximizes the value of the early exercise right. To make the effect of transaction

and decision costs on this strategy and thus eventually also on the valuation more obvious,

we compare the average number of decisions (Figure 2) and the average duration between two

decision points (“decision interval”, Figure 3) on the optimal decision strategy.11

[Figure 2 about here.]

[Figure 3 about here.]

Beginning again with the case of zero transaction and decision costs, we observe very frequent

11The respective averages are calculated under the risk-neutral measure Q over all simulated paths.
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decisions until the bond is exercised or redeemed12 and an average decision interval that lies at

approximately 1.0 step. Highly plausible, this implies a de facto continuous decision strategy.

It is most to the advantage of an investor to make a decision at every possible point in time,

which results in the highest value of the exercise right, as seen before. Higher transaction

and, in particular, decision costs induce a more selective optimal decision strategy and a lower

average number of decisions. Accordingly, the mean decision interval widens with higher costs,

i.e. the investor allows on average more time to pass by before he makes a new decision on his

investment. This is reasonable, because if, for example, the early exercise right is currently out

of the money, the next potentially attractive exercise point—i.e. the point in time where the

option is so deep in the money that it can also account for incurring transaction and decision

costs—tends to be at a later point in time than without these costs. Overall, the lower average

number of decisions and the wider decision interval comprehend and amplify the negative effect

of transaction and decision costs on the value, since possibly lucrative exercise opportunities

might be skipped over and thus the advantage of the option is reduced. Finally, in the case of

very high transaction and decision costs, the average number of decisions approaches 1 and the

decision interval converges to the bond’s maturity (84 months). The possible premium of early

exercising is not expected to exceed the incurring costs at any time and it is optimal for the

investor to fully neglect his exercise right and to simply hold the bond until maturity. Hence,

the early exercise right has no value for the investor.

Still, an investor’s optimal strategy and the valuation depend also on further factors, such as

the market environment or product characteristics. In the following, we exemplary examine the

sensitivities of our results regarding changes in the volatility.13 Figure 4 compares the valuation,

12Compared to the theoretical maximum of 84 decisions, the average number of decisions is relatively low here,
which is mainly due to the assumed significant volatility combined with a long maturity of 7 years, a situation
that facilitates many early exercises.

13Separate analyses not reported here show that the economic relations regarding changes in the product
characteristics are similar to the results of the volatility analysis. Again, the results of our model are very
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the average number of decisions and the decision interval for a low (1.0%), a normal (2.5%) and a

high volatility (4.0%) scenario, whereby the middle charts correspond to our standard scenario.

[Figure 4 about here.]

Starting with the low volatility scenario, we observe consistently lower values for all combi-

nations of transaction and decision costs compared to our former results. Clearly, this is due

to the one-sided opportunity of the early exercise right, which suffers (gains) from a reduced

(enhanced) volatility in the market. Correspondingly, the average optimal number of decisions

declines, since the probability of an early exercise opportunity that compensates also for the

cumulated transaction and decision costs is lower than in a moderate or high volatility environ-

ment. We observe a strong sensitivity regarding changes in transaction and decision costs, so

already with moderate costs typically no exercise is any longer feasible and the average decision

interval approaches maturity. On the other hand, in the high volatility scenario, the value of

the early exercise right increases substantially and even in the case of high transaction and de-

cision costs the option is not forfeited. Accordingly, our model suggests here a denser average

decision frequency with shorter decision intervals, which is reasonable since in a high volatility

environment more opportunities for early exercises come up.

While the sensitivity analyses above focus on value and the optimal decision strategy, it is

also interesting to examine the timing of early exercises in relation to transaction and decision

costs, i.e. at what point in time the exercise right is used. Accordingly, Figure 5 provides an

overview of the modeled cumulative exercise distributions over all simulated 10,000 paths over

time for our standard scenario and selected cost parameters.

[Figure 5 about here.]

reasonable.
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In the case of zero transaction and decision costs (upper-left sub-figure) we recognize an approx-

imately linear cumulative distribution of exercises that approaches almost 80% at the last time

step. This means that for only 20% of all paths, the investor does not use the early exercise

right and holds the bond until maturity. Observing steady and constant exercises over time is

plausible if there are no costs, since with both flat coupon payments and a flat interest term

structure an early exercise tends to be equally attractive throughout the bond’s lifetime. Next,

under transaction costs (lower-left sub-figures) the cumulative distribution curve is pulled down

but remains a similar shape, which implies steady but overall fewer early exercises. This is also

reasonable, since transaction costs do linearly reduce the attractiveness of early exercises for

each time step and therefore have a consistent influence on exercise rates over time. Taking

decision costs into account (right sub-figures), we recognize two effects on the timing of early

exercises. First, decision costs lead to a less smooth distribution. As described, with rising

decision costs an investor’s optimal decision strategy is more selective and focuses on fewer de-

cision points in time. Hence, the formation of clusters and the increasingly stepped exercise

distribution corresponds to the mentioned decrease in the average optimal number of decisions.

Second, we find a growing period of no exercise activity at the beginning. With increasing trans-

action and decision costs, the first optimal decision point at which the potential gain from early

exercise can also compensate for the incurring costs recedes further towards maturity, since the

potential advantage of a one-sided early exercise option naturally grows over time. In summary,

transaction and decision costs have a strong impact on the timing of early exercises and the

valuation of the respective option. The main reason is that both costs influence an investor’s

optimal decision strategy and thus also give rise to different exercise decisions.
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3 Data

3.1 German Federal Saving Notes

We base our empirical analysis on the early exercise behavior of Individual Investors in German

Federal Saving Notes (“Bundesschatzbriefe”, henceforth GFSN). GFSN are putable bonds issued

by the Federal Republic of Germany for governmental financing.14 These products are very well

suited for our analysis for the following reasons. First, GFSN are offered exclusively to Individual

Investors and resident institutions serving the public benefit, charitable or religious purposes.15

Because the latter account for only a very small share of the overall investor group, GFSN are

de facto a pure Individual Investor product. Thus focusing on GFSN allows us to observe the

isolated early exercise behavior of Individual Investors. We do not have to distinguish between

different market participants like institutional or retail investors, as in similar studies such as

Poteshman and Serbin (2003) or Barraclough and Whaley (2012), who analyze early exercises

of exchange-traded options. Second, there is no secondary market, i.e. GFSN cannot be traded.

Individual Investors must only decide whether to hold or exercise, rather than to hold, exercise or

sell their position. This gives us a much more comprehensive picture of Individual Investors’ early

exercise activities compared to studies based on tradable financial products such as warrants or

call options, where selling is always an alternative to exercising (e.g., Koziol, 2006; Pool et al.,

2008). Third, GFSN are simple, easily comprehensible and standardized mid-term fixed-income

products, whose structure and general product features have been unchanged since 1969. New

issuances have been offered several times a year, which provides us with sufficient cross-sectional

14GFSN accounted for about 11.5% of Germany’s overall borrowing in July 1996 with outstanding GFSN
of approximately €46.3 billion according to the Deutsche Bundesbank. However, the relevance of GFSN for
governmental financing decreased with strongly increased debt levels over the years, and the GFSN share of the
overall borrowing sank to about 1.0% in February 2009 with an outstanding volume of about €9.5 billion. In
2012, the German government decided to stop offering products exclusively for Individual Investors and stopped
issuing new GFSN due to disproportionately high costs.

15All product details are described in German Finance Agency (2012).

17



and time-series variation to analyze the general structure of Individual Investors’ early exercises.

Fourth, issuer’s credit risk can be neglected for GFSN due to the high creditworthiness of the

Federal Republic of Germany.

Two types of GFSN exist: Type A, a yearly coupon-paying step-up bond with a maturity

of 6 years and Type B, an accrued-coupon bond with rising yearly coupons and a maturity of

7 years.16 GFSN are offered at nominal value plus accrued interests, whereby at new launches

all current issuances are closed. Both GFSN types are equipped with an early exercise right—a

specific American put option—, which allows the investor to reclaim his investment plus the

accrued interests and for Type B compounded interests at any time after an initial blocking

period of one year.17

The main distribution channel for GFSN is direct sale by the German Finance Agency

(“Bundesrepublik Deutschland Finanzagentur GmbH”), a state-owned central service provider

for Germany’s governmental borrowing and debt management. The German Finance Agency

offers cost-free debt accounts for Individual Investors and does not charge fees for purchasing and

administration nor for redemption of GFSN. Alternatively, GFSN can also be acquired through

banks, which however typically charge custody fees for administration. It is possible to transfer

GFSN ordered through an intermediary to a cost-free account at the German Finance Agency

at any time.

For our study on Individual Investors’ early exercise behavior we are able to utilize a large,

non-publicly available data set from the German Finance Agency. This data set contains—on a

daily and single account basis—all Individual Investor investments and early exercises of GFSN

from July 1996 to February 2009 that were booked in the German Finance Agency’s debt register

16This means Type B has a zero-bond structure. At early exercising or maturity, an investor receives the
nominal value plus all accrued coupons.

17For both types an additional restriction applies: investors are allowed to reclaim a maximal nominal value of
€5,000 within 30 interest days, which we ignore in the following.
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accounts (approximately 64% of the overall outstanding volume).

3.2 Summary statistics

There are 102 GFSN issuance dates in our sample period with an average time between issuances

of 45 days. At each issuance both Type A and Type B are offered with an identical coupon

structure for the first 6 years. Table 1 provides an overview of GFSN coupon structures in

comparison to prevailing spot rates at issuance.

[Table 1 about here.]

Typically the offered coupons lie below the corresponding spot rates for the first years but

rise above market rates towards maturity. Yet in accordance with changes in market conditions,

the coupon structure of new issuances is regularly adjusted, implying a significant variance in

coupon offerings over time for both Type A and B.

Table 2 presents further summary statistics on our data set along two dimensions. The left

sub-tables review the GFSN issuances in our sample. The right sub-tables focus on Individual

Investor accounts with funds placed in GFSN.

[Table 2 about here.]

Regarding GFSN issuances, we find that Type A (Type B) GFSN are held on average in

39,719 (26,192) accounts. Still, as indicated by the lower median of only 29,175 (19,155) accounts

and the comparatively high standard deviations, the distribution is positively skewed. Similar

variations can be observed in the investment volume per GFSN. While the mean volume per

GFSN amounts to approximately €103.220 million (€31.666 million), the median volume lies

at €77.778 million (€25.703 million). In a more detailed analysis not reported here, we note

that both the number of accounts as well as the tendered volume per GFSN tends to decrease
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over time. Nevertheless, we find that all GFSN are of significant size and sufficiently similar for

an overall comparison. Even the least considered GFSN in our sample period (November 2008)

is held in more than 4,000 (4,600) accounts at the German Finance Agency.

Over the sample period 812,750 different Individual Investor accounts held GFSN in the

German Finance Agency’s debt register. About 13% of these accounts acquired both product

types, so that we have in total 558,122 Individual Investor accounts for Type A and 361,141

accounts for Type B GFSN. On average each account invested in 3.617 (4.005) GFSN issuances,

but we recognize again a distribution skewed strongly to the right, with a median of 1.000 (1.000)

investment per account. In other words, the majority of Individual Investor accounts selected

only one GFSN issuance throughout the whole sample period. Remarkably, the corresponding

mean and median investment volume per account is very small, with only €21,087 (€9,721)

or €9,746 (€3,067) per account respectively, which we attribute to the restriction of GFSN to

non-institutional investors.

Finally, we observe that Individual Investors in GFSN make frequent use of their early

exercise rights. The lower part of Table 2 shows that more than one-fourth of all accounts

in our sample exercised early at least once, which equates to an absolute number of 148,812

(95,604) accounts. On average there occurred 6,156 (3,744) early exercises per GFSN issuance,

accounting for a mean early exercise volume per GFSN of €17.868 million (€6.740 million). On

a single account level, this corresponds to a mean exercise volume per account and GFSN of

approximately €2,849 (€1,661).

In summary, the data set provides us with a large number of GFSN issuances, which consis-

tently attracted a wide range of Individual Investors. We find a very low number of investments

per account, rather small investment volumes and significant early exercise activities. Since in

this study we are most interested in the latter, the following section focuses on analyzing the
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early exercise rates of GFSN.

3.3 Early exercise rates

To further examine Individual Investors’ exercise activities in GFSN, we start with calculating

the early exercise volume and the remaining exercisable volume per day for each GFSN. Subse-

quently, we aggregate these empirical data points to an early exercise rate per month EERObs
g,t

per GFSN by:

EERObs
g,t = 1 −

 Dt∏
d=1

[
1 −

Early Exercise Volumeg,t,d

Exercisable Volumeg,t,d

] , (14)

where g is the product index, t the month index, d the day index and Dt stands for the number

of days in the respective month.18

As outlined in the lower part of Table 2, the mean monthly exercise rate is 0.570% (0.536%)

over all exercisable19 Type A (Type B) GFSN, whereby the high standard deviation of 1.028%

(0.810%) points towards a notable variance among products and months. The upper charts

in Figure 6, where we plot the observed early exercise rates for all GFSN against time, also

illustrate this. We register strong fluctuations with a maximum early exercise rate of about

16.8% (14.1%) for an individual GFSN and a minimum rate close to 0% for some Type A and B

GFSN in selected months. Still, we can identify some patterns. For instance, on an individual

bond level we find an increased exercise activity in the first month after the blocking period.

Moreover, there are two general peaks in the exercise rates around the years 2000 and 2007, but

also a longer period of less exercise activity between 2002 and 2006.

[Figure 6 about here.]

18As outlined in Section 3.3.1, Individual Investors can transfer (or deduct) GFSN investments from their bank
accounts to a cost-free debt account at the German Finance Agency at any time. Thus we have to consider
possible daily changes in the exercisable volume in our calculation of monthly early exercise rates.

19178 GFSN (89 Type A, 89 Type B) are exercisable in our sample, since they have left the initial blocking
period.

21



Searching for rationales behind these patterns, we investigate the relationship between the em-

pirical exercise rates and the economic advantage of an exercise in the respective months. To

proxy the latter we calculate a “hold-to-exercise ratio” for each time step and GFSN, which we

define as the fraction of the present value of a GFSN without early exercise right to its exercise

value, i.e.:20

Hold-to-exercise ratiog,t =
Present Value of GFSN without optiong,t

Exercise Valueg,t
. (15)

We use this ratio as a first simple indicator for the potential benefit of an early exercise, since

a hold-to-exercise ratio above 100% implies that it is not reasonable for Individual Investors

to early exercise their GFSN—except for possible exogenous reasons such as, e.g., the need for

liquidity. In contrast, an exercise might be beneficial if the calculated ratio lies below 100%,

depending on the option value. The middle charts of Figure 6 depict the development of the

hold-to-exercise ratios for all GFSN over time. Like in our analysis of exercise rates, we notice

a broad variance throughout the sample period but again some general patterns. We find that

the hold-to-exercise ratios stay clearly above 100% for most outstanding GFSN in most months,

which indicates a low attractiveness of early exercises, although there are also several months

where an early exercise seems to be highly advantageous.

The lower charts in Figure 6 combine both upper analyses and show the relationship between

the monthly exercise rates and the corresponding hold-to-exercise ratios. Even though Individual

Investors obviously do not act homogeneously, we can observe a clear negative correlation here.

The higher the hold-to-exercise ratio, the lower the average monthly early exercise rates tend

to be. Nevertheless, even in highly unattractive months with substantially enhanced hold-to-

20To keep the analysis simple, we neglect the exercise option in determining the GFSN holding strategy here.
However, we find that the economic relations are very similar for more complex ratios.
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exercise ratios, some investors still opt to reclaim their investments. As outlined later in more

detail, we attribute these unexpected early exercises to exogenous reasons such as investors’

liquidity constraints or tax optimizations. On the other hand, early exercise rates tend to grow

exponentially with decreasing hold-to-exercise ratios. In particular, we find a strong increase as

soon as the hold-to-exercise ratio drops below 100%.

At a first glance the described empirical patterns might be surprising, since according to

standard option theory, one would expect a significant, uniform jump in the exercise rates as

soon as the economic advantage of an early exercise is higher than the present value of holding

the GFSN. However, the empirical findings coincide very well with the reasoning behind our

model in Section 2.2.1 regarding transaction and decision costs. With transaction costs, early

exercises are only attractive for Individual Investors if the hold-to-exercise ratio falls signifi-

cantly below 100%, since the economic advantage of an early exercise must compensate also for

these additionally incurring costs. Moreover, as pointed out in the comparative-static analysis,

transaction and decision costs induce a non-continuous decision strategy and lead to clustered

and temporarily offset early exercise points, which might be linked to hold-to-exercise ratios

that (clearly) undercut 100%.

To further investigate Individual Investors’ early exercises and to avoid misleading inferences

based on idiosyncratic patterns of selected GFSN issuances, we move from the single bond

perspective to a more consolidated overview. Figure 7 exhibits the average monthly exercise

rate over all exercisable GFSN of both types over time. Additionally, the corresponding German

1- and 10-year spot rates are depicted, indicating the level and shape of the interest term

structure at the respective time in Germany.

[Figure 7 about here.]

We stress five observations here. First, we find that the average monthly rates are in large

23



part very similar for Type A and Type B GFSN. The highest rates for both types are observed

around July 2000, where on average about 2.1% (1.9%) of the outstanding volume is returned

for Type A (Type B) GFSN. Least activity occurs in both cases at the end of 2005 with average

exercise rates as low as 0.2% (0.1%).

Second, similar to the analysis on a single bond base, we identify two periods of elevated

exercise rates during our sample period which both coincide with rising short- and middle-term

interest rates. In general, Individual Investors’ exercise rates appear highly sensitive to spot

rate movements and valuation changes. We note a distinct trend among Individual Investors

towards more (less) early exercise activity in rising (falling) interest environments. As described,

this is reasonable, because with increased interest rates the respective hold-to-exercise ratio falls

and it might be advantageous for Individual Investors to deduct their funds or just roll their

investments into a newer GFSN issuance with higher coupons.

Third, the aggregated view underlines once again that the investor base acts heterogeneously.

We find comparably small mean empirical exercise rates, which also differ among months and

products. In the case of homogeneous investors with an identical basis for decision-making, we

would instead expect exercise rates of either 100% or close to 0% on a single product level.

Fourth, regardless of any interest rate movements, we identify a base exercise rate of about

0.160% over all GFSN per month. Even in times of broadly appreciating GFSN and high

hold-to-exercise ratios there are always some Individual Investors, who still decide to recall

their investments before maturity. As already mentioned, we consider this continuous base

exercise rate to be exogenously triggered. We argue that, for example, individual liquidity

requirements might be a reason for steady early exercises. Indeed, since GFSN can be terminated

comparatively easily and without any extra fees, a GFSN exercise might be one of the first choices

for an Individual Investor with liquidity constraints.
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Fifth, we observe small but regular peaks in the exercise rates of Type B products at the end

of a year, especially in 1999 and 2006. We attribute these effects to a second exogenous factor,

namely the tax optimization of Individual Investors at the end of a year, a well known effect

described in the literature (e.g., Badrinath and Lewellen, 1991; Sias and Starks, 1997; Ivkovic

et al., 2005; who find that Individual Investors show frequent tax-motivated trading before the

year is over). In Germany interest payments to Individual Investors are generally taxed when

they are distributed, whereby only the share of interest payments is considered that exceeds

a saver’s tax allowance. At the beginning of both years 2000 and 2007 this tax threshold was

significantly reduced in Germany, which put in particular Type B GFSN at a disadvantage, since

due to the zero-bond structure the tax allowance for such products can be utilized only once,

whereas for Type A GFSN it is considered for each year’s interest payment. Hence, it could

have been advantageous for Individual Investors to exercise Type B GFSN early with hold-to-

exercise ratios above 100% shortly before the new tax regulations in 2000 and 2007 became

effective, so as to exploit tax advantages. We also ascribe the small but regular peaks around

December (year-end effect) for Type B GFSN to taxation rules. The same argument applies:

since the taxation is not spread over several years as for Type A GFSN, year-end optimizations

of personal tax allowances are much more relevant and can be a good reasons for early exercises.

In the following, we account for both exogenous effects—base exercise rate and taxation—by

introducing control variables.

4 Empirical analysis

4.1 Calibration procedure

In this section we calibrate our model to the data set and derive conclusions about the empirical

early exercise behavior of Individual Investors. Assuming that Individual Investors’ exercise
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strategies of GFSN are driven by individual transaction and decision costs, we aim to deter-

mine the empirically best-fitting cost levels for our model. We structure the calibration in four

steps. First, we define and estimate an interest rate term structure model. Second, we consider

heterogeneity of transaction and decision costs among Individual Investors by forming different

investor clusters. Third, we account for increased exercise activities after the initial one-year

blocking period and for exogenous effects that are likely to be found in the empirical data—as

suggested by the analysis in Section 3.3.3—but which are not incorporated in our model. Even-

tually, we specify the calibration via an optimization algorithm.

Interest rate model

For the valuation of interest rate derivatives, typically no-arbitrage term structure models, such

as one- or two-factor HJM models or LIBOR market models, are applied (see, e.g., Hull, 2006).

While these models have the advantage of being perfectly consistent with the current interest

term structure, they prove to be less suitable for our study due to possible logical violations

in comparing the empirical and modeled optimal exercise strategies. With a continuous re-

calibration it might happen that the optimal exercise point determined by the model is empir-

ically never feasible, a circumstance that would distort the calibration quality and reduce its

reliability. Therefore, we choose to apply a more sophisticated model of the class of essential

affine term structure models according to Dai and Singleton (2000), which determines the in-

terest term structure throughout the whole sample period based on a time-invariant function of

only a small set of common state variables.

Egorov et al. (2006) and Tang and Xia (2007) show that a three-factor essentially affine

model, with one factor affecting the conditional variance matrix, provides empirically the best

performance for different countries including Germany, while it also allows for very flexible
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specifications. Accordingly, we utilize for the calibration a three-factor essentially affine model

EA1(3). We calibrate the model to monthly German term structures over the period of July

1996 to February 2009 via a Kalman filtering algorithm together with quasi-maximum likelihood,

under the assumption that the rates of all yearly maturities 1 to 10 years are not perfectly

observed. This is basically the same procedure as used by, e.g., Hördahl and Vestin (2005). The

estimated model parameters are presented in Table 3.

[Table 3 about here.]

Heterogeneity of Individual Investors

As already discussed, it is likely that transaction and decision costs vary among Individual

Investors. To incorporate this heterogeneity in the calibration while also preserving a low number

of estimation parameters and numerical efficiency, we make three assumptions. First, each

investor has constant transaction and decision costs, i.e. a specific Individual Investor features

the same cost profile over the whole sample period and for each acquired GFSN. Second, we do

not estimate individual costs for each single account but group Individual Investors in discrete

clusters, which is a common approach in the literature (e.g., Stanton, 1995; Koziol, 2006) to

capture heterogeneity. We allow for 9 different clusters of transaction costs from 0% to 7.5%

and for 9 different clusters of decision costs from 0% to 0.75%,21 which gives us overall 81

clusters representing a wide choice of different combinations of transaction and decision costs.

In addition, we consider that there might be a group of “passive investors”, who under no

circumstances make use of their exercise rights, and form an extra cluster with “infinite” or

very high transaction and decision costs. Third, the pool of Individual Investors is identical for

each GFSN of the same type with regard to the distribution of transaction and decision costs,

21Obviously, there is a broad variety of possible cost ranges we can assign to the clusters. Intensively testing
different approaches, we find that the following cost parameters are most suitable for our calibration: decision
costs of [0%, 0.010%, 0.025%, 0.050%, 0.0750%, 0.100%, 0.250%, 0.500%, 0.750%] and transaction costs of [0%,
0.100%, 0.250%, 0.500%, 0.750%, 1.000%, 2.500%, 5.000%, 7.500%].
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which seems plausible in view of the broad range of investors in each GFSN and the unchanged

product structure throughout the sample period.

The key challenge of our approach is the determination of appropriate cluster weights. Avoid-

ing estimating each proportion separately, we assume here—extending the approach of Stanton

(1995)—that all cluster weights can be described by a combination of two discretized beta dis-

tributions. We choose the beta distribution because it can adapt to a multitude of different

shapes based on the estimation of only two parameters α and β.22 Utilizing the cumulative

distribution function of the beta distribution, which is given by:

F (x|α, β) = 1
B(α, β)

∫ x

0
tα−1(1 − t)β−1dt, (16)

where B(α, β) stands for the standard beta distribution with parameters α and β, we estimate

all individual cluster weights p at issuance through:

pg,0,i,j = (1 − ω) ×
[
F

(
i

9
|αT C , βT C

)
− F

(
i − 1

9
|αT C , βT C

)]
×
[
F

(
j

9
|αDC , βDC

)
− F

(
j − 1

9
|αDC , βDC

)]
, (17)

where ω is the proportion of passive investors, g is the GFSN index, i and j are the cluster

indices for the respective transaction and decision costs, and the time index 0 denotes that we

start at issuance.

We know from our model that there is always only one individual optimal strategy
(
Γ , τ Γ

)
for

each combination of transaction and decision costs. This means we get diverging optimal exercise

strategies among our clusters. For instance, we can presume that clusters with comparatively

22To reduce complexity we limit in the following the interval of possible values for α and β to [0,8]. Testing
several possible interval ranges we find that this restriction does not have a significant influence on the results.
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low transaction and decision costs use their exercise rights more often and earlier than others.

Conversely, clusters associated with high costs might take later or no advantage of attractive

exercise opportunities. Such different exercise strategies result in shifts in the relative cluster

proportions over time and induce a phenomena known as burnout (e.g., Stanton, 1995). Burnout

basically refers to the dependency of early exercise rates on former exercise activities, which leads

in our case to a declining sensitivity over time of all GFSN regarding interest rate movements

due to the shrinking proportion of clusters with low transaction and decision costs, which have

not exercised yet.

Besides the burnout feature we also take into consideration that Individual Investors can

act sluggishly, which means that not all investors in a cluster exercise at the optimal exercise

month.23 More precisely, we allow that at the optimal exercise point a sluggish proportion s

of investors delay the exercise (e.g., because they are lazy or hesitant) and instead defers the

transaction to an upcoming month. We assume a latest sluggish reaction after 6 months and

thus restrict s to an upper bound of 65%.24 Consequently, the overall endogenous exercise rate

EERr per month and GFSN is given by:

EERr
g,t,i,j =



(1 − s) × pg,t,i,j , t = Γτ Γg,i,j

(1 − s) × pg,t,i,j , EERr
g,t−1,i,j > 0

0, otherwise,

(18)

where t stands for the month index and s for the sluggish proportion of investors. Equation

(18) says that a cluster exercises at (or shortly after) an endogenously defined optimal point in

23Such sluggish reactions are described in the literature on momentum effects, among others. For example
Hvidkjaer (2011) finds extremely sluggish reactions of Individual Investors to past returns.

24After 6 months, the maximum remaining investor share in a cluster equals 0.656 ≈ 0.075. We assume that
these remaining investors also exercise 6 months after the optimal exercise point.
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time, which is determined by the decision strategy Γ and the respective exercise strategy τ Γ . At

all other months the endogenous exercise rate equals zero. We determine Γτ Γ for all GFSN and

clusters according to (11) to (13), whereby we follow the same calculation approach as outlined

in Section 2.2.2 for the comparative-static analysis—except that we now replace the one-factor

short rate model with the described essentially affine interest term structure model.25

Blocking period

The right to exercise a GFSN early cannot be used in the first year after its purchase. As a

consequence, we observe increased exercise activities in the first month after this initial blocking

period, which might, e.g., be attributed to investors’ deferred liquidity demand over the previous

twelve months or could simply be a reaction to earlier market changes. We account for these

extraordinary exercises after the blocking period by introducing a dummy variable EERb and

define EERb
g,t,i,j = pg,t,i,j × EERb.

Exogenous effects

In accordance with our empirical observations and the study of Stanton (1995), we control for

three different exogenous effects in the calibration. First, we incorporate a base exercise rate,

which we set to the empirically observed rate of 0.160% per GFSN per month. Additionally,

we consider for Type B GFSN a possible year-end effect in December and taxation effects in

December 1999 and December 2006. Thus the exogenous early exercise rate EERe per month

and GFSN is given by:

EERe
g,t,i,j = pg,t,i,j × (0.0016 + DY E + DT 99 + DT06), (19)

25Since we have to compute for each GFSN and each month not only the respective exercise value but also all
possible continuation values, these calculations are still a challenge even for modern computers. Here, there are
up to 300 billion path calculations and up to 30 million regressions needed.
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where DY E is the the year-end dummy and DT99 and DT06 are the respective dummies for

changes in the tax legislations. Both endogenous (18) and exogenous exercises (19) as well as

the increased demand after the initial blocking period EERb lead to shrinking cluster weights

over time, since less Individual Investors stay invested in the respective GFSN. Hence, as last

step in our calibration approach, we model the development of each cluster weight through:

pg,t+1,i,j = pg,t,i,j − EERr
g,t,i,j − EERe

g,t,i,j − EERb
g,t,i,j . (20)

Overall calibration

Combining equations (16) to (20), the overall early exercise rate EER of a single GFSN in a

selected month is given by:

EERg,t =

9∑
i=1

9∑
j=1

EERr
g,t,i,j + EERe

g,t,i,j + EERb
g,t,i,j

9∑
i=1

9∑
j=1

pg,t,i,j + ω

, (21)

where g is the GFSN index, t the month index, i and j are the cluster indices and ω stands

for the group of passive investors. Aiming at minimizing the difference between the modeled

exercise rates and the empirical observations, we apply a sequential programming approach that

searches for best fitting distribution parameters (αT C , βT C , αDC , βDC) and model factors (ω,

s, EERb, DY E, DT99, DT06) for each Type A and B GFSN through a multidimensional

non-linear minimization algorithm based on the interior-point method. As a measure of the

goodness-of-fit we use the mean squared error (MSE) on a single product base, which we define
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over all 151 months and all investigated GFSN per type as:

MSE = 1
151

151∑
t=1

1
Nt

Nt∑
g=1

(
EERg,t−d(g)+1 − EERObs

g,t−d(g)+1

)2
, (22)

where EERObs is the empirical exercise rate for a selected GFSN and month as determined

in (14), EER the model-implied exercise rate according to (19), N stands for the number of

outstanding and exercisable GFSN at each month and d(g) is a function determining the issuance

month of the respective GFSN.26 We re-run the calibration algorithm until the measured change

in the MSE falls below 0.000001%. Finally, to reduce potential biases in the results due to local

minima and to test the robustness of our results, we repeat the entire calibration approach 250

times with random start parameters.

4.2 Calibration results

We note that our calibration is not a full general equilibrium specification, since transaction and

decision costs—occurring at the decision points and at exercise in our model—may in reality

also occur when the hedge portfolio is adjusted over time, affecting the arbitrage reasoning of

standard option theory. However, for example (implicitly) assuming equivalence of real and

risk-neutral probability measures is a standard approach in calibrating similar models, such as

mortgage prepayment models (see, e.g., Stanton, 1995; Stanton and Wallace, 1998). Table 4

provides the calibration results.

[Table 4 about here.]

Focusing first on the full-sample results (left column), we receive a very good fit of the modeled

early exercise rates to the empirical data with a mean squared error (MSE) on a single GFSN

26We test several measures of the goodness-of-fit (e.g., MSE of the average exercise rate per month per type),
but find that an optimization using the MSE on a single product base provides best results.
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and month level of approximately 0.0036% for Type A GFSN (0.0025% for Type B), which

equates to a mean absolute error of circa 0.2827% (0.2627%). To verify the model fit, we

calculate also the mean R2 value between modeled and empirical exercise rates over all N

GFSN according to R2 = 1
N

∑N
g=1 1 − Variance of monthly prediction errorg

Variance of empirical monthly exercise rateg
and a consolidated

R2 value between the modeled and empirical average monthly exercise rate according to R2 =

1 − Variance of average monthly prediction error
Variance of empirical average monthly exercise rate . Both values are remarkably high with about 50%

and 79% for Type A and approximately 47% and 73% for Type B GFSN, whereby the second

R2 value is higher due to consolidation effects. For a further analysis of the model fit, the upper

part of Figure 8 depicts the consolidated calibration results compared to the mean empirical

rates over time.

[Figure 8 about here.]

We note that our model captures different market phases equally well, as the mean modeled and

observed rates differ by less than 0.1% for both types for most months. Only at the beginning

of the sample period, between 1997 and 1999, does our model output clearly underestimate

the empirical data, which we ascribe at least partly to the launch of a new stock market seg-

ment in Germany in 1997. This “New Market” broadly attracted Individual Investors and thus

presumably also enhanced the exogenous demand for liquidity.27

The next part of Table 4 presents the estimated beta distribution factors. The resulting

distributions are diagrammed graphically in the lower part of Figure 8. We get mean decision

costs of about 0.062% for Type A GFSN (0.138% for Type B) and remarkably higher mean

transaction costs of circa 3.993% (3.791%) over all clusters during our sample period, which

implies that empirically Individual Investors do not use their exercise rights as predicted by

standard models. Instead, they act as if they face significant transaction and decision costs. It
27According to the Deutsche Bundesbank, the share of stock investments of Individual Investors’ overall capital

increased in Germany from circa 8.0% in 1997 to circa 14.5% in 2000.

33



is not surprising that decision costs are estimated significantly lower here since these costs can

accrue several times and have—as seen—a stronger impact on an investor’s decision strategy,

whereas transaction costs are due only once, at exercise.

Moreover, we find that the estimated beta distributions for decision costs are clearly bent

left towards very low or zero costs, whereas the distributions for transaction costs are more

even but somewhat skewed to the right. Decision costs are slightly more important for Type B

GFSN, which we attribute to the generally higher nominal value of Type GFSN due to the zero-

bond structure with accumulated interest payments and to our definition of absolute rather than

relative transaction and decision costs. The broad standard deviations of estimated transaction

and decision costs imply strongly diverging optimal strategies among investors and over time.

We estimate the share of passive investors at about 56% (53%) of the overall investor group,

which expresses that a considerable proportion of investors in GFSN completely neglect the

incorporated early exercise right. In addition, the calibration results indicate that approximately

65% (65%) of the investors per cluster respond sluggishly, which is very close to our upper bound

of half a year response time and means that a large share of investors show some kind of delay

between the optimal decision and the actual exercise.

Regarding exogenous effects, we find that in particular the adjustments in the tax legislation

for the year 2000 had a substantial influence on Individual Investors’ early exercise decisions. We

estimate that these changes account for additional exercises of circa 1.984% of the outstanding

volume of Type B GFSN in December 1999. The year-end effect (0.568%) and the change in

taxation in 2006 (1.167%) had, according to our calibration, a smaller but still notable impact.
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4.3 Robustness

To verify the results, we re-calibrate our model for different sub-samples. The right part (two

columns) of Table 4 shows exemplary results for two calibrations, each based on roughly half

of the sample period. We find that the estimated parameters for both the transaction and

decision cost distributions and for the share of passive or sluggish investors are relatively robust

and stay in similar ranges, which validates our former findings. Moreover, while the calibration

performs better and is more stable if we incorporate both exercise peaks around 2000 and 2007

and a longer time horizon, the MSE for our exemplary sub-samples remains at a low level

of only circa 0.0036% for Type A GFSN (0.0025% for Type B GFSN) and of about 0.0069%

(0.0035%) respectively. Accordingly, we compute again convincing sub-sample R2 values of

86.005% (77.338%) and 70.105% (58.351%) respectively between the average modeled monthly

exercise rates and the average empirical rates.

4.4 Valuation

The comparative-static analysis in Section 2.2.2 revealed that transaction and decision costs

result in diverging optimal exercise strategies and timings compared to the standard case. Ob-

viously, issuers gain a financial advantage when Individual Investors exercise at other points in

time than would, e.g., institutional investors, who follow standard financial rationality. Simi-

larly, issuers benefit when Individual Investors completely forfeit the exercise right or exercise

“randomly”.

To quantify the advantage for the issuer, we compare the valuation of the option component

of a GFSN at issuance according to standard valuation,28—assuming all investors exercise op-

timally with no transaction and decision costs—(model value) with the empirical value which

28As described, standard market valuation gives the same results as our model with no transaction and decision
costs.
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incorporates the actual exercise behavior of Individual Investors. We calculate the empirical

value in two steps. First, for a given GFSN we simulate 10,000 paths and calculate the opti-

mal exercise point for each combination of transaction and decision costs. Second, we utilize

the full-sample calibration results of Section 4.4.2 to weight all exercise values according to our

estimated cost distributions, whereby we also account for the base exercise rate, the share of

passive investors, sluggish reactions and additional exercises for the first month after the initial

blocking period and—in the case of Type B GFSN—at the end of the year. We exclude only the

one-time tax effects due to changes in the tax legislation because such events cannot be foreseen

in a valuation ex-ante. The overall weighted value is our empirical value.

The first two columns of Table 5 show statistics on the model and the empirical value of

the option component for all GFSN in our sample. Additionally, the third column exhibits the

respective advantage for the issuer, which we calculate simply as the difference between both

values.

[Table 5 about here.]

We find that the value of the early exercise right on the issuance date according to standard

market valuation amount on average to 2.2433% of the nominal value for Type A and to 2.9859%

for Type B GFSN, whereby the higher option value for Type B GFSN can mainly be attributed

to the longer maturity. For both types we note a significant variation over time as indicated by

option values of 1.1071% (1.3672%) for the 5 percent quantile and 4.0102% (5.2208%) for the

95 percent quantile. However, the empirical value of the early exercise right at issuance is much

lower for most products. On average we compute empirical option values of only approximately

0.2009% for Type A GFSN (1.1411% for Type B), whereby the 95 percent quantile lies at only

0.8194% (2.8956%). These significantly lower empirical values are due to a combination of

three factors: first, we have a high proportion of passive investors and the empirical value is a
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weighted average over all investor clusters. Second, transaction and decision costs can lead to

missed optimal exercise opportunities. Third, liquidity-driven exercises (base exercise rate) and

exogenously motivated exercises (tax effects) can occur at points in time where it is not optimal

to exercise according to standard models and where early exercises can actually have a negative

effect on the valuation. In fact, for some GFSN this negative effect can even overcompensate

the positive influence of early exercises at attractive points in time, which results in negative

option costs for the issuer (see the 5 percent quantile in Table 5). Generally, we observe a

significant and consistent financial advantage over time for issuers due to Individual Investors’

diverging empirical exercise strategies. We determine an average advantage of circa 2.0424%

of the nominal value for Type A and circa 1.8449% for Type B GFSN. Similarly, the median

advantage accrues to approximately 1.8559% (1.7604%).

5 Conclusions

In this paper, we analyzed Individual Investors’ early exercise behavior in fixed-income deriva-

tives. We showed that given transaction and decision costs, continuous decision-making is no

longer worthwhile and developed a new approach to model early exercises that endogenously

determines a rational decision and exercise strategy in the face of such costs. Based on a com-

prehensive empirical data set, we applied our model and found a convincing fit between the

modeled early exercise rates and the empirical observations. Our results suggest that a large

proportion of Individual Investors act as if they face significant but heterogeneous transaction

and decision costs, that there is also a notable share of passive investors and that investors’

reaction to exercise opportunities is often sluggish. All these findings imply that the optimal

timing of early exercises for Individual Investors can clearly differ from that of, e.g., institutional

investors.
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Following, we derive three policy implications. First, considering transaction and decision

costs, the value of a fixed-income derivative with an early exercise right is lower than suggested

by standard valuation models. As a result, issuers gain a significant financial advantage in

pricing such derivatives without accounting for investors’ individual exercise strategies, which

we estimate at around 2% of the nominal value for our sample. Second, we reckon that issuers

can influence investors’ strategies by designing specific derivative structures. In some separate

analyses, we find for example that a very steep coupon structure leads to a higher sensitivity

towards decision costs and makes decision-making less attractive during much of the GFSN

lifespan until maturity. This implies that investors tend to more frequently forgo possible exercise

opportunities. Third, issuers or financial intermediaries dealing with Individual Investors must—

besides allowing for rational early exercise decisions—also account for a base exercise rate and

for potential, unexpected, early exercise peaks in their risk and liquidity management due to

exogenous effects such as changes in tax laws.

Finally, we note that our model need not be restricted to analyzing fixed-income derivatives

and Individual Investor’s exercise decisions as in this study. Our approach can easily be ap-

plied to other derivatives, investor groups or overall research questions, where an endogenously

determined decision strategy is relevant. For instance, mortgages might be a possible field of

application, as it seems reasonable to assume that homeowners also do not continuously make

decisions on refinancing or prepaying, but follow similar rational decision and exercise strategies

as described in this paper.
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Appendix A — Model proof

The main idea of the proof is to transform the problem into an equivalent optimal stopping

problem in a process that is indexed by a partially ordered set. Roughly speaking, we replace

the question “When shall I make the next decision?” in the ordered set T with the question

“In which direction shall I go next?” in a partially ordered set I. Re-indexing the (discounted)

payoff process accordingly allows us to adopt techniques from the theory of sequential stochastic

optimization for multi-dimensionally-indexed processes as, for example, presented by Cairoli and

Dalang (1996).

To provide some intuition, let us assume that the derivative can be exercised at the points

in time 1, 2 and 3, i.e. T = {0, 1, 2, 3}. Then, given a realization ω, there is a one-to-one

relationship between a decision strategy and a sub-sequence of the set I = {(0), (0, 1), (0, 2), (0, 3),

(0, 1, 2), (0, 1, 3), (0, 2, 3), (0, 1, 2, 3)}. Today, in 0, the investor has to decide on the next decision

point 1, 2 or 3. This decision is represented by (0,1), (0,2) or (0,3), respectively. If he, for

example, decides on 1, i.e. he chooses (0,1), he can make the next decision in 2 or 3, represented

by (0,1,2) and (0,1,3). Figure 9 shows the resulting possible transformed strategies. For example,

making a decision in 1 and 3 means going from (0) to (0,1) and afterwards to (0,1,3). Thus,

making a decision regarding the next decision point is equivalent to choosing a path through the

decision tree representing all possible realization of a decision strategy. Assigning to each knot

γ ∈ I of the decision tree the (discounted) payoff of the derivative Xγ—including the transaction

and decision costs occurring when going from (0) to γ—, finding an optimal strategy is equivalent

to finding an optimal path through the tree and then finding the best time to stop the path, i.e.

to exercise the derivative.

[Figure 9 about here.]

Definitions and re-indexing

Let I = {(0, γ1, ..., γm) : 0 < γm < γm+1, 0 ≤ m ≤ N} be the set of all increasing sub-

sequences of T whose first element is 0. For γ ∈ I, define l(γ) = card(γ) − 1, L(γ) = γl(γ),

and γ[m] = (0, γ1, ..., γm) for m ≤ l(γ) and γ[m] = γ for m ≥ l(γ), i.e. l(γ) is the length of

the sequence γ excluding the first component, L(γ) is the last component of γ, and γ[m] is the

element of I that is formed by the first m + 1 components of γ or equals γ. We define a partial
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order “≺” on I via:

γ ≺ δ if γ = δ[l(γ)], (A.1)

i.e. γ is smaller than δ if it forms the first components of δ that is called a successor of γ. Define

Dγ = {δ ∈ I : γ ≺ δ and l(δ) = l(γ) + 1}. Elements of Dγ are the smallest elements of I that are

larger than γ with respect to the order ≺ and are therefore called direct successors of γ. Note

that the set of direct successors of γ is empty if and only if the last component of γ, L(γ), equals

tN .

We set for each γ ∈ I:

Xγ = exp
(

−
∫ L(γ)

0
r(s)ds

)
(XL(γ) − TCL(γ)) −

l(γ)∑
i=1

exp
(

−
∫ γi

0
r(s)ds

)
DCγi , (A.2)

Gγ = FL(γ). (A.3)

Xγ represents the discounted payoff if the deterministic decision strategy γ is applied and stopped

in L(γ), and the process (Xγ)γ , indexed by the partially ordered set I, is adapted to the filtration

(Gγ)γ .

Transformed strategies and equivalent optimization problem

We call a sequence Γ ′ = (Γ ′
n)n=0,...,N , of (Gγ)-stopping points29 Ω→ I a transformed strategy, if

the sequence fulfills the following conditions:

Γ ′
0 = (0), (A.4)

Γ ′
n+1 ∈ DΓ ′

n
if Γ ′

n+1 ̸= Γ ′
n, (A.5)

Γ ′
n+k = Γ ′

n for all k ≥ 1 if Γ ′
n+1 = Γ ′

n, (A.6)

Γ ′
n+1 is GΓ ′

n
-measurable. (A.7)

Define l(Γ ′) = inf{n : Γ ′
n+1 = Γ ′

n} that is a (GΓ ′
n
)-stopping time. Intuitively, a transformed

strategy is a rule for choosing a path through I that is stopped in Γ ′
l(Γ ′). A denotes the set of

all transformed strategies and Aγ denotes for γ ∈ I the set of transformed strategies that stop

29A stopping point is the vector-valued analogon of a stopping time, i.e. {Γ ′
n ≺ γ} ∈ Gγ for all γ.
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in γ or one of its successors, i.e. Aγ = {Γ ′ ∈ A : γ ≺ Γ ′
l(Γ ′) a.s.}. This implies that the first

components of Γ ′ are deterministic and coincide with (γ[0], γ[1], ..., γ[l(γ)] = γ) which means that

the path through I described by Γ ′ goes through γ.

There is a one-to-one correspondence between strategies defined in Section 2.2.1 and transformed

strategies defined above. Given a strategy (Γ = (Γn)n, τ Γ ), set

Γ ′
n =

 (Γ0, ..., Γn) on {τ Γ ≥ n}

(Γ0, ..., Γτ Γ−1, Γτ Γ , ..., Γτ Γ ) on {τ Γ < n}.
(A.8)

It is straightforward to show that Γ ′ = (Γ ′
n)n is a transformed strategy. On the other hand,

given a transformed strategy Γ ′ set,

Γn =

 L(Γ ′
n) on {l(Γ ′) ≥ n}

tN on {l(Γ ′) < n},
(A.9)

τ Γ = l(Γ ′). (A.10)

Then, (Γ = (Γn)n, τ Γ ) is a strategy.

We define for a transformed strategy Γ ′:

XΓ ′ = exp

−
∫ L

(
Γ ′

l(Γ ′)

)
0

r(s)ds

X
L

(
Γ ′

l(Γ ′)

) − TC
L

(
Γ ′

l(Γ ′)

)
−

l(Γ ′)∑
i=1

exp
(

−
∫ L(Γ ′

i )

0
r(s)ds

)
DCγi .

(A.11)

Note that each γ ∈ I defines a unique deterministic transformed strategy by setting Γ ′ =

(0, γ[1], ..., γ[N ]) that stops in γ. Thus, (A.2) and (A.11) coincide in this case. Due to the one-

to-one correspondence between strategies and transformed strategies the optimization problem

(6) from Section 2.2.1 is equivalent to finding an optimal transformed strategy Γ ′opt:

EQ (XΓ ′opt) = sup
Γ ′

EQ (XΓ ′) . (A.12)
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Solving the problem

We solve this problem via backward induction:30

• For all γ with Dγ = ∅ set:31

Zγ = Xγ . (A.13)

• If l(γ) < N , Dγ ̸= ∅ and Zδ has been defined for all δ ∈ Dγ :

Zγ = sup
(

Xγ , sup
δ∈Dγ

EQ(Zδ|Gγ)
)

. (A.14)

(Zγ)γ is adapted to (Gγ)γ and a supermartingale with respect to ≺.32 For each γ we equip Dγ

with an order according to the size of the last element L(δ), δ ∈ Dγ .

Define:

D(γ) = inf
{

δ ∈ Dγ : EQ(Zδ|Gγ) = sup
δ′∈Dγ

EQ(Zδ′ |Gγ)
}

(A.15)

and let (Γ (γ))γ∈I be a family of random variables defined backward in the following way:

• For all γ with Dγ = ∅ set:

Γ ′(γ) =
(
γ[0], γ[1], ..., γ[N ]

)
. (A.16)

• If l(γ) < N , Dγ ̸= ∅ and Γ ′(δ) has been defined for all δ ∈ Dγ , set:

Γ ′(γ) =


(
γ[0], γ[1], ..., γ[N ]

)
on {Zγ = Xγ}

Γ ′(D(γ)) on {Zγ > Xγ}.
(A.17)

A simple exercise shows that Γ ′(γ) is a transformed strategy for each γ with Γ ′(γ) ∈ Aγ . In the

following we show that Γ ′((0)) is optimal in the sense of (A.12). The following theorem is the

key.

Theorem 1 For all γ ∈ I and ∆′ ∈ Aγ

Zγ = EQ(XΓ ′(γ)|Gγ) ≥ EQ(X ′
∆|Gγ) (A.18)

30The procedure and the following proof of Theorem 1 are analogous to Cairoli and Dalang (1996), pp. 210–212,
for constructing so-called optimal “accessible stopping points” when a process is indexed by specific finite subsets
of Nd.

31Note that l(γ) = N implies Dγ = ∅.
32It can be shown that (Zγ)γ is Snell´s envelope, i.e. the smallest supermartingale dominating (Xγ)γ .
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holds.

Proof. (A.18) is trivial for γ with Dγ = ∅. Let γ ∈ I with Dγ ̸= ∅ and assume (A.18) has

been shown for all δ ∈ Dγ . We first consider the equality in (A.18). By definition, we have for

F ∈ Gγ :

∫
F

Zγ =
∫

F ∩{Zγ=Xγ}
XΓ (γ) +

∫
F ∩{Zγ>Xγ}

Zγ . (A.19)

By hypothesis, Zδ = EQ(XΓ ′(δ)|Gδ) holds for all δ ∈ Dγ , and by definition Zγ = EQ(Zδ|Gγ) on

{Zγ > Xγ} ∩ {D(γ) = δ} ∈ Gγ . This implies Zγ = EQ(XΓ ′(δ)|Gγ) on {Zγ > Xγ} ∩ {D(γ) = δ}

and therefore Zγ = EQ(XΓ ′(D(γ))|Gγ) on {Zγ > Xγ}. Consequently, the equality in (A.18) holds.

The next step is proving the inequality. Let ∆′ ∈ Aγ with ∆′ ̸= Γ ′(γ). For all δ ∈ Dγ , define

∆′(δ) =

 ∆
′ on {∆′

l(γ)+1 = δ}

(δ[0], δ[1], ..., δ[N ]) on {∆′
l(γ)+1 ̸= δ}.

(A.20)

∆′(δ) is a transformed strategy with ∆′(δ) ∈ Aδ. As ∆′ ∈ Aγ , ∆′ goes through γ which implies

∆′
l(γ) = γ. This implies that we either have ∆′

l(γ)+1 = γ, i.e. ∆′ stops in γ, or ∆′
l(γ)+1 ∈ Dγ .

Also note that {∆′
l(γ)+1 = δ} ∈ Gγ for all δ ∈ Dγ . Thus, we have for F ∈ Gγ :

∫
F

Zγ ≥
∫

F ∩{∆′
l(γ)+1=γ}

Z∆′ +
∑

δ∈Dγ

∫
F ∩{∆′

l(γ)+1=δ}
Zδ (A.21)

≥
∫

F ∩{∆′
l(γ)+1=γ}

X∆′ +
∑

δ∈Dγ

∫
F ∩{∆′

l(γ)+1=δ}
X∆′(δ) (A.22)

=
∫

F ∩{∆′
l(γ)+1=γ}

X∆′ +
∫

F ∩{∆′
l(γ)+1 ̸=γ}

X∆′ (A.23)

=
∫

F
X∆′ , (A.24)

where the first inequality results from the supermartingale property of Zγ and the second holds

by hypothesis. Consequently, the inequality in (A.18) holds. �

Theorem 1 implies that the transformed strategy Γ ′((0)) defined by (A.17) is an optimal solution

of (A.12). Thus, Z(0) = EQ(XΓ ′((0))|G(0)) equals V0, i.e. the value of the derivative, and—due

to the one-to-one correspondence—an optimal strategy exists.

The final step is to show (via induction) that the optimal transformed strategy Γ ′((0)) is equiv-

alent via (A.9) and (A.10) to the strategy defined by (11) to (13). The equivalence is trivial for
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n = 0. Assume it holds for n. Let H = {(Γ0, ..., Γn) = γ} ∩ {D(γ) = δ∗} ∩ {τ Γ ≥ n} ∈ Gγ . As δ∗

is a direct successor of γ, its first n elements form γ. By (A.9) we have Γn+1 = L(Γ ′
n+1) = δ∗

n+1 on

H. It suffices to show that δ∗
n+1 equals the smallest element of I larger than γn that maximizes

EQ
(
exp

(
−
∫ δn+1

γn
r(s)ds

)
Vδn+1

∣∣∣FΓn) on H with δ ∈ Dγ .

First, define for each ∆′ ∈ Aγ :

Xn
∆′ = exp

−
∫ L

(
∆′

l(∆′)

)
γn

r(s)ds

X
L

(
∆′

l(∆′)

) − TC
L

(
∆′

l(∆′)

)
−

l(∆′)∑
i=n

exp
(

−
∫ L(∆′

i)

γn

r(s)ds

)
DCL(∆′

i).

(A.25)

E(Xn
∆′ |Gγ) equals the “value” of the derivative in γn if the strategy ∆′ is applied. By definition,

we have EQ(Zδ∗ |Gγ) ≥ EQ(Zδ|Gγ) for all δ ∈ Dγ on H. Given (A.18), Zδ = EQ(XΓ ′(δ)|Gδ)

holds, and, thus,

EQ(XΓ ′(δ∗)|Gγ) ≥ EQ(XΓ ′(δ)|Gγ) for all δ ∈ Dγ on H. (A.26)

As the Γ ′(δ) and Γ ′(δ∗) coincide in their first n elements, this implies:

EQ(Xn
Γ ′(δ∗)|Gγ) ≥ EQ(Xn

Γ ′(δ)|Gγ) for all δ ∈ Dγ on H, (A.27)

which implies that δ∗
n+1 fulfills the above required condition. Analogue considerations hold for

τ Γ .
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Tables

Table 1: GFSN coupon structure and spot rates

Type A and Type B GFSN Type B GFSN

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

Yearly Mean 2.745 3.199 3.627 4.034 4.409 4.821 4.944
coupon in % Median 2.750 3.250 3.625 4.000 4.250 4.500 4.750

Min. 1.000 1.500 2.000 2.500 3.250 3.500 3.500
Max. 4.500 4.750 5.500 6.250 6.750 7.500 7.500
Std. dev. 0.810 0.811 0.805 0.819 0.856 0.927 0.924

Spot rate at Mean 3.387 3.540 3.700 3.853 3.994 4.122 4.235
issuance in % Median 3.429 3.599 3.779 3.898 3.936 4.021 4.117

Min. 1.909 2.061 2.207 2.383 2.562 2.730 2.882
Max. 5.119 5.216 5.267 5.293 5.608 5.940 6.202
Std. dev. 0.821 0.766 0.727 0.709 0.707 0.713 0.724

The table exhibits statistics on the coupon offerings for Type A and B GFSN for all 204 issuances (102 Type A, 102 Type B) in
our sample period from July 1996 to February 2009 and on the corresponding German spot rates. For year 1 to 6 identical coupons
are offered for Type A and B at each issuance date, whereas the coupons in year 7 are only applicable for Type B. The spot rates
represent the term structure of interest rates on listed Federal securities (method by Svensson) at the respective issuance date
according to Deutsche Bundesbank.
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Table 2: Summary statistics for GFSN data set

German Federal Saving Notes (GFSN) Individual Investor accounts

Type A Type B Type A Type B

Total issuances 102 102 Total 558,122 361,141

Number of Mean 39,719 26,192 Number of Mean 3.617 4.005
investors per Median 29,175 19,155 different GFSN Median 1.000 1.000
GFSN p5 8,711 7,639 investments per p5 1.000 1.000

p95 100,068 54,037 account p95 13.000 16.000
Std. dev. 32,686 17,385 Std. dev. 6.761 8.559

Volume in €m Mean 103.220 31.666 Investment Mean 21,087 9,721
per GFSN Median 77.778 25.703 volume in € per Median 9,746 3,067

p5 17.139 8.140 GFSN per account p5 511 255
p95 254.559 66.864 p95 79,897 37,807
Std. dev. 89.958 22.664 Std. dev. 41,240 27,702

Number of 547,864 333,232 Number of 148,812 95,604
early exercises accounts with (27%) (26%)

early exercises

Number of Mean 6,156 3,744 Number of Mean 0.982 0.923
early exercises Median 5,508 3,718 early exercises Median 0.000 0.000
per GFSN p5 514 444 per account p5 0.000 0.000

p95 13,286 8,275 p95 5.000 4.000
Std. dev. 4,173 2,355 Std. dev. 3.116 3.331

Early exercise Mean 17.868 6.740 Early exercise Mean 2,849 1,661
volume in €m Median 13.989 5.053 volume in € per Median 0 0
per GFSN p5 0.780 0.332 GFSN per account p5 0 0

p95 46.914 17.164 p95 15,850 9,203
Std. dev. 15.873 6.401 Std. dev. 8,669 5,937

Monthly early Mean 0.570 0.536
exercise rates in % Median 0.240 0.283
per GFSN p5 0.100 0.096

p95 2.397 1.892
Std. dev. 1.028 0.810

The tables shows summary statistics on the GFSN data set for our sample period from July 1996 to February 2009. Overall 204 GFSN and
812,750 accounts with 881,096 early exercises are considered. The statistics on early exercises are based only on the 178 exercisable GFSN
(after the initial one-year blocking period) from July 1996 to February 2008. €m stands for €million.

Table 3: Parameters for essentially affine three-factor model

δ β κ θ

Estimated 0.0106 1.0000 0.0365 0.0000 0.0000 15.0218
parameters 0.0002 4.0189 -0.4965 -0.1798 0.3223 40.8385

0.0000 2.5195 0.4256 -2.2507 1.6917 50.3077
0.0013

The table shows the estimated parameters for an essentially affine three-factor interest term
structure model EA1(3) on a weekly basis with one factor affecting the conditional variance
matrix for the German market from July 1996 to February 2009. The model is defined as rt =

δ0 + δ′Yt, whereby the dynamics of Y are modeled by dYt = KQ(θQ − Yti
)dt + Σ

√
StdW̃t

and S is given by St,j,j = αj + β′
j Y (t).
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Table 4: Calibration results

Overall Sub-sample Sub-sample
1996-2009 1996-2002 2003-2009

Type A Type B Type A Type B Type A Type B

Mean squared error in % 0.0036 0.0025 0.0036 0.0025 0.0069 0.0035

Mean absolute error in % 0.2827 0.2627 0.3061 0.3276 0.5059 0.3860

Mean R2 (on single GFSN level) in % 49.946 46.606 56.989 52.701 52.519 50.091

Consolidated R2 (mean exercise rates) in % 78.915 72.715 86.005 77.338 70.105 58.351

Beta distribution of αT C 1.652 1.397 0.666 1.410 1.771 1.746
transaction costs βT C 0.637 0.607 0.506 0.929 0.754 1.002

Std. dev. 0.247 0.265 0.336 0.268 0.244 0.249
Skewness -0.838 -0.742 -0.257 -0.354 -0.731 -0.459
Mean transaction costs in % T C 3.993 3.791 2.911 2.707 3.693 2.909
Median transaction costs in % T C 2.500 2.500 1.000 1.000 2.500 1.000

Beta distribution of αDC 0.132 0.350 0.123 0.523 0.275 0.512
decision costs βDC 0.679 0.687 0.825 1.642 1.421 0.796

Std. dev. 0.275 0.331 0.240 0.241 0.224 0.321
Skewness 1.745 0.647 2.093 1.031 1.629 0.408
Mean decision costs in % DC 0.062 0.138 0.043 0.054 0.036 0.155
Median decision costs in % DC 0.000 0.010 0.000 0.010 0.000 0.025

Passive investors in % ω 56.340 52.741 58.403 58.803 61.786 62.655

Sluggish investors in % s 65.000 64.955 62.911 64.890 64.509 63.960

Additional exercises first month EERb 2.092 2.426 3.572 3.175 1.947 3.175
after blocking period in %

Exogenous early exercises DT 99 1.984 2.258
in % (dummies) DT 06 1.167 1.271

DY E 0.568 0.804 0.792
The table shows calibration results for different data samples. The results in the first column are based on a calibration on the
whole sample period from July 1996 to February 2009, while for the second and third column the calibration is based only on a
sub-sample from July 1996 to December 2002 respectively on a sub-sample from January 2003 to February 2009. For the calibration
all exercisable GFSN are valued based on the model of Section 2.2.1 using Monte-Carlo simulation with 10,000 paths with a step
size of ∆t = 1/12 (84 steps) and applying least square regression methods. The interest structure is modeled based on an essentially
affine interest term structure model on a weekly basis. Accordingly, the calibration parameters are estimated via a multidimensional
non-linear minimization algorithm based on the interior-point method with a MSE change tolerance of 0.000001% as stopping criterion.
Additionally, the results are checked for local minima by re-running the calibration 250 times with random start parameters. The base
exercise rate is fixed to the empirical observed value of 0.160% to ensure robustness of the calibration. The tax-related dummies are
only considered for Type B GFSN (DT stands for tax changes, DY E for the year-end-effect).

Table 5: Comparison of standard model and empirical valuation based on calibration

Value of early exercise right in GFSN in % Advantage for issuer

Standard model (no transaction Empirical Standard model minus
and decision costs) (according to calibration) empirical valuation

Type A Type B Type A Type B Type A Type B

Mean 2.2433 2.9859 0.2009 1.1411 2.0424 1.8449
Median 1.9486 2.7005 0.1165 0.9372 1.8559 1.7604
p5 1.1071 1.3672 -0.1469 -0.1680 1.1741 1.3136
p95 4.0102 5.2208 0.8194 2.8956 3.2183 2.4394
Std. dev. 0.9704 1.2373 0.3134 1.0210 0.6791 0.4108

The table shows statistics on the valuation of the option component of all 178 exercisable GFSN at issuance in the sample period. The
left part compares the valuation according to standard market models without transaction and decision costs and the empirical valuation
based on the calibration results of Table 4 except the tax dummies. The right part shows statistics on the spread between the standard
model and the empirical valuation.
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Figures

Figure 1: Valuation of a putable bond dependent on transaction and decision costs
This figure shows the exemplary valuation of a putable bond dependent on transaction and decision costs. The analysis is based on an
accrued-coupon bond that offers a yearly coupon of 5% in a zero bond structure over a maturity of 7 years and grants the investor additionally
an early exercise right. The interest rate environment is estimated using the 1-factor-model of Hull and White (1990) with κ = 20%, σ = 2.5%
and θ adjusted to a long-term interest rate of 5%. For the valuation a Monte-Carlo simulation with 10,000 paths with a step size of ∆t = 1/12
(84 steps) and least squares regression methods are applied.
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Figure 2: Average number of decisions dependent on transaction and decision costs
This figure shows the average optimal number of decisions according to the optimal decision strategy for an exemplary putable bond dependent
on transaction and decision costs. The analysis is based on an accrued-coupon bond that offers a yearly coupon of 5% in a zero bond structure
over a maturity of 7 years and grants the investor additionally an early exercise right. The interest rate environment is estimated using the
1-factor-model of Hull and White (1990) with κ = 20%, σ = 2.5% and θ adjusted to a long-term interest rate of 5%. For the valuation a
Monte-Carlo simulation with 10,000 paths with a step size of ∆t = 1/12 (84 steps) and least squares regression methods are applied, whereby
the respective averages are calculated under the risk-neutral measure Q over all simulated paths.
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Figure 3: Average decision interval dependent on transaction and decision costs
This figure shows the average duration between two decision points (“decision interval”) in steps according to the optimal decision strategy for
an exemplary putable bond dependent on transaction and decision costs. The analysis is based on an accrued-coupon bond that offers a yearly
coupon of 5% in a zero bond structure over a maturity of 7 years and grants the investor additionally an early exercise right. The interest
rate environment is estimated using the 1-factor-model of Hull and White (1990) with κ = 20%, σ = 2.5% and θ adjusted to a long-term
interest rate of 5%. For the valuation a Monte-Carlo simulation with 10,000 paths with a step size of ∆t = 1/12 (84 steps) and least squares
regression methods are applied, whereby the respective averages are calculated under the risk-neutral measure Q over all simulated paths.
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Figure 4: Sensitivities of value, number of decisions and decision interval regarding volatility
This figure presents a sensitivity analysis of the value and the optimal decision strategy, i.e. the average optimal number of decisions and
the average decision interval (denoted in steps, minimum 1 step to maximum 84 steps), regarding changes in the interest rate volatility. The
analysis is based on an accrued-coupon bond that offers a yearly coupon of 5% in a zero bond structure over a maturity of 7 years and grants
the investor additionally an early exercise right. The interest rate environment is estimated using the 1-factor-model of Hull and White (1990)
with κ = 20%, σ as shown and θ adjusted to a long-term interest rate of 5%. For the valuation a Monte-Carlo simulation with 10,000 paths
with a step size of ∆t = 1/12 (84 steps) and least squares regression methods are applied, whereby the respective averages are calculated
under the risk-neutral measure Q over all simulated paths.
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Figure 5: Cumulative exercise distributions over time dependent on selected transaction and
decision costs
This figure shows cumulative early exercise distributions for an exemplary putable bond over time dependent on selected transaction and
decision costs. The analysis is based on an accrued-coupon bond that offers a yearly coupon of 5% in a zero bond structure over a maturity
of 7 years and grants the investor additionally an early exercise right. The interest rate environment is estimated using the 1-factor-model of
Hull and White (1990) with κ = 20%, σ = 2.5% and θ adjusted to a long-term interest rate of 5%. For the valuation a Monte-Carlo simulation
with 10,000 paths with a step size of ∆t = 1/12 (84 steps) and least squares regression methods are applied.
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Figure 6: GFSN early exercise rates per month in relation to hold-to-exercise ratio
This figure shows the early exercise rates per month for Type A and B GFSN over time and in relation to the respective hold-to-exercise ratio,
which is defined as the fraction of the present value of a GFSN without option to its exercise value. The upper charts present the development
of the early exercise rates over time (except for the initial one-year blocking period) for all 178 exercisable GFSN issuances. The middle
charts exhibit the development of the hold-to-exercise ratios for all GFSN over time. The lower charts plot the economic relation between the
hold-to-exercise ratio and the early exercise rates per month. There are no exercises before 1997 due to the initial blocking period.

01/97 01/99 01/01 01/03 01/05 01/07 01/09
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Month

G
F

S
N

 m
on

th
ly

 e
xe

rc
is

e 
ra

te
s

Type A

01/97 01/99 01/01 01/03 01/05 01/07 01/09
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%
Type B

Month

01/97 01/99 01/01 01/03 01/05 01/07 01/09
0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Month

H
ol

d−
to

−
ex

er
ci

se
 r

at
io

01/97 01/99 01/01 01/03 01/05 01/07 01/09
0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Month

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Hold−to−exercise ratio

G
F

S
N

 m
on

th
ly

 e
xe

rc
is

e 
ra

te
s

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Hold−to−exercise ratio

55



Figure 7: Average monthly GFSN exercise rates
This figure presents the average monthly early exercise rates over all exercisable GFSN of Type A and B from July 1996 to February 2009.
There are no exercises before 1997 due to the initial one-year blocking period. Additionally, the development of the respective German 1-year
and 10-year spot rates (according to Deutsche Bundesbank) are depicted.
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Figure 8: Calibration results and model fit
This figure shows the fit of the overall calibration and the estimated beta distributions for transaction and decision costs for both Type A and
B GFSN based on the results in the first column of Table 4. The upper charts present a comparison between the mean modeled early exercise
rates per month and the empirical observations. The lower charts exhibit the estimated cost distributions over the defined clusters.
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Figure 9: Exemplary decision tree
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