Rating Under Asymmetric Information

Christian Hilpert¹ Stefan Hirth² Alexander Szimayer³

¹Lingnan College, Zhongshan University

²University of Southern Denmark

³Universität Hamburg

Universität Passau July 4, 2018

Motivation

Financial crisis: controversies regarding rating process

 U.S. Dep. of Justice vs S&P, 2013: rating inflation (settlements: S&P \$1.5 bil. in 2015, Moody's \$864 mil. in 2017)

Questions:

- Can information asymmetry between firm (insider) and rating agency (public) explain rating inflation?
- How does a rating agency (public) learn a borrower's quality dynamically?
- What are the implications for the firm and investors?

This Paper

- Game between firm (insider) and rating agency (public) in continuous time
 - with dynamic feedback
 - under asymmetric information (soft information)
- Explains learning of rating agency (public)
 - firm surviving financial distress signals "hidden treasures"
 - directional learning (leading to "ex-post rating inflation") (Warren Buffett (2004):

"You only learn who has been swimming naked when the tide goes out.")

- Provides novel empirically testable implications:
 - effect of equity's cash injection in bad times on spread
 - security design game (fixed vs. PSD) as signalling device

Model

- Players: firm (insider) and rating agency (public)
- Firm's true cash flow: X as GBM
- Rating agency monitors imperfectly observed cash flow
 D = θ X
- Unobservable firm characteristics $\tilde{\theta}$ (soft information)
- Rating is distance to predicted default threshold \hat{D}^{\star}

$$egin{aligned} R_t = rac{D_t}{\hat{D}_t^\star}\,, t \geq 0 \end{aligned}$$

- Strategies:
 - firm (insider): default time $\tau(\tilde{\theta})$
 - rating agency (public): predicted default threshold D*

Belief of the Rating Agency and Updating

• Rating agency updates beliefs π on types.

Prior with density ϕ_0

Firm's payoff

Firm's payoff for $\theta \in \Theta$: Present value of future cash flows

$$U_{F}^{(\theta)}(\tau,\hat{D}^{\star}) = \mathbb{E}\left[\int_{0}^{\tau(\theta)} e^{-rt} \left(D_{t}/\theta - C(D_{t}/\hat{D}_{t}^{\star})\right) \, \mathrm{d}t \middle| \, \tilde{\theta} = \theta\right]$$

- Remember: $X = D/\theta$
- Firm's interest rate C: depending on rating $R = D/\hat{D}^{\star}$

Rating agency's payoff

Rating agency's payoff: Discounted reputation

$$U_{RA}^{\pi}(\tau,\hat{D}^{\star}) = -\mathbb{E}\left[\int_{0}^{\tau} e^{-\rho t} k_{t}^{\pi} \,\mathrm{d}t\right]$$

- $D^{\star}(\theta)$: firm's type-dependent default threshold
- Cost rate

$$k_t^{\pi} = \int_{\Theta} (\hat{D}_t^{\star} - D^{\star}(\theta))^2 \, \phi_t^{\pi}(\theta) \, \mathrm{d} heta \,, ext{ for } t \geq 0$$

Learning of Rating Agency

- Firm signals quality by not defaulting iff $t < \tau(\theta)$
- Lower θ (underestimated cash flow) implies
 - higher shareholder value
 - delayed default
- Rating agency
 - adjusts belief π from prior π_0 by ruling out θ s from right/top
 - learns from observing low cash flows without default
- ⇒ Directional learning
- ⇒ Signal transmitted by running minimum of observed cash flow

$$E_t = \inf_{0 \le s \le t} D_s, t \ge 0$$

Buffett: "You only learn who has been swimming naked when the tide goes out."

Best Response of Rating Agency

Underestimated true cash flow

Theory Results

- Best response of rating agency: learning
- Best response of firm: cut-off rule
- Equilibrium I: existence
- Equilibrium II: uniqueness and ODE

Information Asymmetry benefits Shareholders

C-rated firm under perfect information

 $\rightarrow\,$ information asymmetry increases expected shareholder value

Empirically Testable Implications

- signalling quality by equity's cash injection
 - predict post-right issues/private placement outperformance in terms of the credit spread (event study)
 - complements past research on equity issues and stock price underperformance (Hertzel et al., 2002)
- security design game: fixed coupon debt vs. performance sensitive debt (PSD)
 - predicts underestimated (low θ)) firms choosing risk-compensating PSD while overestimated firms (high θ) choosing fixed-interest debt
 - extending previous theoretical results under complete information (Manso, Strulivic, Tchistyi, 2010)

Conclusion

Directional learning induces "ex-post rating inflation":

- firm's shareholders benefit on average from information asymmetry at expense of debt
- firm's shareholders are able to delay default

- Model provides empirically testable predictions
 - post-right issues/private placement outperformance in terms of the credit spread
 - choice of debt contract (PSD vs. fixed coupon) is screening device under information asymmetry

Extensions

- Generalize symmetric cost rate k^π allowing for bias
- Leaning towards debt holders: rating agency overestimates default barrier/risk
 - most conservative case: firm follows perfect information default strategy but with higher interest payments
 - firm's self-interest: reduce information asymmetry

Shareholder Value

